MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgtr Structured version   Visualization version   GIF version

Theorem hpgtr 26546
Description: The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
hpgtr.c (𝜑𝐶𝑃)
hpgtr.1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
Assertion
Ref Expression
hpgtr (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝐶,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem hpgtr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . . . 4 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
3 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
5 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 hpgid.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 hpgid.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
8 hpgid.a . . . . 5 (𝜑𝐴𝑃)
9 hpgcom.b . . . . 5 (𝜑𝐵𝑃)
102, 3, 4, 5, 6, 7, 8, 9hpgbr 26538 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
111, 10mpbid 234 . . 3 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐))
12 simprl 769 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐴𝑂𝑐)
13 hpgtr.1 . . . . . . . 8 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
1413ad2antrr 724 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵((hpG‘𝐺)‘𝐷)𝐶)
156ad2antrr 724 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG)
167ad2antrr 724 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿)
179ad2antrr 724 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑃)
18 hpgtr.c . . . . . . . . 9 (𝜑𝐶𝑃)
1918ad2antrr 724 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑃)
20 simplr 767 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝑐𝑃)
21 simprr 771 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑂𝑐)
222, 3, 4, 5, 15, 16, 17, 19, 20, 21lnopp2hpgb 26541 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐶𝑂𝑐𝐵((hpG‘𝐺)‘𝐷)𝐶))
2314, 22mpbird 259 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑂𝑐)
2412, 23jca 514 . . . . 5 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐴𝑂𝑐𝐶𝑂𝑐))
2524ex 415 . . . 4 ((𝜑𝑐𝑃) → ((𝐴𝑂𝑐𝐵𝑂𝑐) → (𝐴𝑂𝑐𝐶𝑂𝑐)))
2625reximdva 3272 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2711, 26mpd 15 . 2 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐))
282, 3, 4, 5, 6, 7, 8, 18hpgbr 26538 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐶 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2927, 28mpbird 259 1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  wrex 3137  cdif 3931   class class class wbr 5057  {copab 5119  ran crn 5549  cfv 6348  (class class class)co 7148  Basecbs 16475  TarskiGcstrkg 26208  Itvcitv 26214  LineGclng 26215  hpGchpg 26535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-s2 14202  df-s3 14203  df-trkgc 26226  df-trkgb 26227  df-trkgcb 26228  df-trkgld 26230  df-trkg 26231  df-cgrg 26289  df-leg 26361  df-hlg 26379  df-mir 26431  df-rag 26472  df-perpg 26474  df-hpg 26536
This theorem is referenced by:  trgcopy  26582  trgcopyeulem  26583  acopyeu  26612
  Copyright terms: Public domain W3C validator