| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hpgtr | Structured version Visualization version GIF version | ||
| Description: The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
| Ref | Expression |
|---|---|
| hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
| hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| hpgcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| hpgcom.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
| hpgtr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hpgtr.1 | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| Ref | Expression |
|---|---|
| hpgtr | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpgcom.1 | . . . 4 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
| 2 | hpgid.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | hpgid.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hpgid.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | hpgid.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 6 | hpgid.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | hpgid.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 8 | hpgid.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | hpgcom.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | hpgbr 28731 | . . . 4 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
| 11 | 1, 10 | mpbid 232 | . . 3 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) |
| 12 | simprl 770 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐴𝑂𝑐) | |
| 13 | hpgtr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) | |
| 14 | 13 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
| 15 | 6 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG) |
| 16 | 7 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿) |
| 17 | 9 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵 ∈ 𝑃) |
| 18 | hpgtr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 19 | 18 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐶 ∈ 𝑃) |
| 20 | simplr 768 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝑐 ∈ 𝑃) | |
| 21 | simprr 772 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵𝑂𝑐) | |
| 22 | 2, 3, 4, 5, 15, 16, 17, 19, 20, 21 | lnopp2hpgb 28734 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → (𝐶𝑂𝑐 ↔ 𝐵((hpG‘𝐺)‘𝐷)𝐶)) |
| 23 | 14, 22 | mpbird 257 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐶𝑂𝑐) |
| 24 | 12, 23 | jca 511 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐)) |
| 25 | 24 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) → (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
| 26 | 25 | reximdva 3143 | . . 3 ⊢ (𝜑 → (∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
| 27 | 11, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐)) |
| 28 | 2, 3, 4, 5, 6, 7, 8, 18 | hpgbr 28731 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐶 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
| 29 | 27, 28 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 ∖ cdif 3897 class class class wbr 5089 {copab 5151 ran crn 5615 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 TarskiGcstrkg 28398 Itvcitv 28404 LineGclng 28405 hpGchpg 28728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-trkgc 28419 df-trkgb 28420 df-trkgcb 28421 df-trkgld 28423 df-trkg 28424 df-cgrg 28482 df-leg 28554 df-hlg 28572 df-mir 28624 df-rag 28665 df-perpg 28667 df-hpg 28729 |
| This theorem is referenced by: trgcopy 28775 trgcopyeulem 28776 acopyeu 28805 |
| Copyright terms: Public domain | W3C validator |