MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgtr Structured version   Visualization version   GIF version

Theorem hpgtr 28739
Description: The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
hpgtr.c (𝜑𝐶𝑃)
hpgtr.1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
Assertion
Ref Expression
hpgtr (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝐶,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem hpgtr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . . . 4 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
3 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
5 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 hpgid.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 hpgid.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
8 hpgid.a . . . . 5 (𝜑𝐴𝑃)
9 hpgcom.b . . . . 5 (𝜑𝐵𝑃)
102, 3, 4, 5, 6, 7, 8, 9hpgbr 28731 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
111, 10mpbid 232 . . 3 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐))
12 simprl 770 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐴𝑂𝑐)
13 hpgtr.1 . . . . . . . 8 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
1413ad2antrr 726 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵((hpG‘𝐺)‘𝐷)𝐶)
156ad2antrr 726 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG)
167ad2antrr 726 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿)
179ad2antrr 726 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑃)
18 hpgtr.c . . . . . . . . 9 (𝜑𝐶𝑃)
1918ad2antrr 726 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑃)
20 simplr 768 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝑐𝑃)
21 simprr 772 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑂𝑐)
222, 3, 4, 5, 15, 16, 17, 19, 20, 21lnopp2hpgb 28734 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐶𝑂𝑐𝐵((hpG‘𝐺)‘𝐷)𝐶))
2314, 22mpbird 257 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑂𝑐)
2412, 23jca 511 . . . . 5 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐴𝑂𝑐𝐶𝑂𝑐))
2524ex 412 . . . 4 ((𝜑𝑐𝑃) → ((𝐴𝑂𝑐𝐵𝑂𝑐) → (𝐴𝑂𝑐𝐶𝑂𝑐)))
2625reximdva 3143 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2711, 26mpd 15 . 2 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐))
282, 3, 4, 5, 6, 7, 8, 18hpgbr 28731 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐶 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2927, 28mpbird 257 1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wrex 3054  cdif 3897   class class class wbr 5089  {copab 5151  ran crn 5615  cfv 6477  (class class class)co 7341  Basecbs 17112  TarskiGcstrkg 28398  Itvcitv 28404  LineGclng 28405  hpGchpg 28728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-trkgc 28419  df-trkgb 28420  df-trkgcb 28421  df-trkgld 28423  df-trkg 28424  df-cgrg 28482  df-leg 28554  df-hlg 28572  df-mir 28624  df-rag 28665  df-perpg 28667  df-hpg 28729
This theorem is referenced by:  trgcopy  28775  trgcopyeulem  28776  acopyeu  28805
  Copyright terms: Public domain W3C validator