Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hpgtr | Structured version Visualization version GIF version |
Description: The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
hpgid.p | ⊢ 𝑃 = (Base‘𝐺) |
hpgid.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpgid.l | ⊢ 𝐿 = (LineG‘𝐺) |
hpgid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hpgid.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgid.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
hpgcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
hpgcom.1 | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
hpgtr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hpgtr.1 | ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
Ref | Expression |
---|---|
hpgtr | ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgcom.1 | . . . 4 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐵) | |
2 | hpgid.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
3 | hpgid.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hpgid.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | hpgid.o | . . . . 5 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
6 | hpgid.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | hpgid.d | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
8 | hpgid.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | hpgcom.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | hpgbr 27410 | . . . 4 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐))) |
11 | 1, 10 | mpbid 231 | . . 3 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) |
12 | simprl 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐴𝑂𝑐) | |
13 | hpgtr.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐵((hpG‘𝐺)‘𝐷)𝐶) | |
14 | 13 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵((hpG‘𝐺)‘𝐷)𝐶) |
15 | 6 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG) |
16 | 7 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿) |
17 | 9 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵 ∈ 𝑃) |
18 | hpgtr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
19 | 18 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐶 ∈ 𝑃) |
20 | simplr 766 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝑐 ∈ 𝑃) | |
21 | simprr 770 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐵𝑂𝑐) | |
22 | 2, 3, 4, 5, 15, 16, 17, 19, 20, 21 | lnopp2hpgb 27413 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → (𝐶𝑂𝑐 ↔ 𝐵((hpG‘𝐺)‘𝐷)𝐶)) |
23 | 14, 22 | mpbird 256 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → 𝐶𝑂𝑐) |
24 | 12, 23 | jca 512 | . . . . 5 ⊢ (((𝜑 ∧ 𝑐 ∈ 𝑃) ∧ (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐)) → (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐)) |
25 | 24 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 ∈ 𝑃) → ((𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) → (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
26 | 25 | reximdva 3161 | . . 3 ⊢ (𝜑 → (∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐵𝑂𝑐) → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
27 | 11, 26 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐)) |
28 | 2, 3, 4, 5, 6, 7, 8, 18 | hpgbr 27410 | . 2 ⊢ (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐶 ↔ ∃𝑐 ∈ 𝑃 (𝐴𝑂𝑐 ∧ 𝐶𝑂𝑐))) |
29 | 27, 28 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴((hpG‘𝐺)‘𝐷)𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 ∖ cdif 3895 class class class wbr 5092 {copab 5154 ran crn 5621 ‘cfv 6479 (class class class)co 7337 Basecbs 17009 TarskiGcstrkg 27077 Itvcitv 27083 LineGclng 27084 hpGchpg 27407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-oadd 8371 df-er 8569 df-map 8688 df-pm 8689 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-fzo 13484 df-hash 14146 df-word 14318 df-concat 14374 df-s1 14400 df-s2 14660 df-s3 14661 df-trkgc 27098 df-trkgb 27099 df-trkgcb 27100 df-trkgld 27102 df-trkg 27103 df-cgrg 27161 df-leg 27233 df-hlg 27251 df-mir 27303 df-rag 27344 df-perpg 27346 df-hpg 27408 |
This theorem is referenced by: trgcopy 27454 trgcopyeulem 27455 acopyeu 27484 |
Copyright terms: Public domain | W3C validator |