MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgtr Structured version   Visualization version   GIF version

Theorem hpgtr 27418
Description: The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
hpgid.p 𝑃 = (Base‘𝐺)
hpgid.i 𝐼 = (Itv‘𝐺)
hpgid.l 𝐿 = (LineG‘𝐺)
hpgid.g (𝜑𝐺 ∈ TarskiG)
hpgid.d (𝜑𝐷 ∈ ran 𝐿)
hpgid.a (𝜑𝐴𝑃)
hpgid.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
hpgcom.b (𝜑𝐵𝑃)
hpgcom.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
hpgtr.c (𝜑𝐶𝑃)
hpgtr.1 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
Assertion
Ref Expression
hpgtr (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡   𝐶,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)

Proof of Theorem hpgtr
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 hpgcom.1 . . . 4 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
2 hpgid.p . . . . 5 𝑃 = (Base‘𝐺)
3 hpgid.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hpgid.l . . . . 5 𝐿 = (LineG‘𝐺)
5 hpgid.o . . . . 5 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
6 hpgid.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 hpgid.d . . . . 5 (𝜑𝐷 ∈ ran 𝐿)
8 hpgid.a . . . . 5 (𝜑𝐴𝑃)
9 hpgcom.b . . . . 5 (𝜑𝐵𝑃)
102, 3, 4, 5, 6, 7, 8, 9hpgbr 27410 . . . 4 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
111, 10mpbid 231 . . 3 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐))
12 simprl 768 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐴𝑂𝑐)
13 hpgtr.1 . . . . . . . 8 (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
1413ad2antrr 723 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵((hpG‘𝐺)‘𝐷)𝐶)
156ad2antrr 723 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG)
167ad2antrr 723 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿)
179ad2antrr 723 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑃)
18 hpgtr.c . . . . . . . . 9 (𝜑𝐶𝑃)
1918ad2antrr 723 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑃)
20 simplr 766 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝑐𝑃)
21 simprr 770 . . . . . . . 8 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐵𝑂𝑐)
222, 3, 4, 5, 15, 16, 17, 19, 20, 21lnopp2hpgb 27413 . . . . . . 7 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐶𝑂𝑐𝐵((hpG‘𝐺)‘𝐷)𝐶))
2314, 22mpbird 256 . . . . . 6 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐶𝑂𝑐)
2412, 23jca 512 . . . . 5 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → (𝐴𝑂𝑐𝐶𝑂𝑐))
2524ex 413 . . . 4 ((𝜑𝑐𝑃) → ((𝐴𝑂𝑐𝐵𝑂𝑐) → (𝐴𝑂𝑐𝐶𝑂𝑐)))
2625reximdva 3161 . . 3 (𝜑 → (∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐) → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2711, 26mpd 15 . 2 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐))
282, 3, 4, 5, 6, 7, 8, 18hpgbr 27410 . 2 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐶 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐶𝑂𝑐)))
2927, 28mpbird 256 1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wrex 3070  cdif 3895   class class class wbr 5092  {copab 5154  ran crn 5621  cfv 6479  (class class class)co 7337  Basecbs 17009  TarskiGcstrkg 27077  Itvcitv 27083  LineGclng 27084  hpGchpg 27407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-concat 14374  df-s1 14400  df-s2 14660  df-s3 14661  df-trkgc 27098  df-trkgb 27099  df-trkgcb 27100  df-trkgld 27102  df-trkg 27103  df-cgrg 27161  df-leg 27233  df-hlg 27251  df-mir 27303  df-rag 27344  df-perpg 27346  df-hpg 27408
This theorem is referenced by:  trgcopy  27454  trgcopyeulem  27455  acopyeu  27484
  Copyright terms: Public domain W3C validator