Step | Hyp | Ref
| Expression |
1 | | erdsze.n |
. . . 4
ā¢ (š ā š ā ā) |
2 | | erdsze.f |
. . . 4
ā¢ (š ā š¹:(1...š)ā1-1āā) |
3 | | erdszelem.k |
. . . 4
ā¢ š¾ = (š„ ā (1...š) ā¦ sup((āÆ ā {š¦ ā š« (1...š„) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š„ ā š¦)}), ā, < )) |
4 | 1, 2, 3 | erdszelem3 34172 |
. . 3
ā¢ (š“ ā (1...š) ā (š¾āš“) = sup((āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < )) |
5 | 4 | adantl 482 |
. 2
ā¢ ((š ā§ š“ ā (1...š)) ā (š¾āš“) = sup((āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < )) |
6 | | snex 5430 |
. . . . . 6
ā¢ {š“} ā V |
7 | | hashf 14294 |
. . . . . . 7
ā¢
āÆ:Vā¶(ā0 āŖ {+ā}) |
8 | 7 | fdmi 6726 |
. . . . . 6
ā¢ dom
āÆ = V |
9 | 6, 8 | eleqtrri 2832 |
. . . . 5
ā¢ {š“} ā dom
āÆ |
10 | | erdszelem.o |
. . . . . 6
ā¢ š Or ā |
11 | 1, 2, 3, 10 | erdszelem4 34173 |
. . . . 5
ā¢ ((š ā§ š“ ā (1...š)) ā {š“} ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) |
12 | | inelcm 4463 |
. . . . 5
ā¢ (({š“} ā dom āÆ ā§
{š“} ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā (dom āÆ ā© {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
) |
13 | 9, 11, 12 | sylancr 587 |
. . . 4
ā¢ ((š ā§ š“ ā (1...š)) ā (dom āÆ ā© {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
) |
14 | | imadisj 6076 |
. . . . 5
ā¢ ((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) = ā
ā (dom āÆ ā©
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) = ā
) |
15 | 14 | necon3bii 2993 |
. . . 4
ā¢ ((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
ā (dom āÆ ā©
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
) |
16 | 13, 15 | sylibr 233 |
. . 3
ā¢ ((š ā§ š“ ā (1...š)) ā (āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
) |
17 | | eqid 2732 |
. . . . . 6
ā¢ {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)} = {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)} |
18 | 17 | erdszelem2 34171 |
. . . . 5
ā¢ ((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā Fin ā§ (āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā) |
19 | 18 | simpli 484 |
. . . 4
ā¢ (āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā Fin |
20 | 18 | simpri 486 |
. . . . 5
ā¢ (āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā |
21 | | nnssre 12212 |
. . . . 5
ā¢ ā
ā ā |
22 | 20, 21 | sstri 3990 |
. . . 4
ā¢ (āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā |
23 | | ltso 11290 |
. . . . 5
ā¢ < Or
ā |
24 | | fisupcl 9460 |
. . . . 5
ā¢ (( <
Or ā ā§ ((āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā Fin ā§ (āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
ā§ (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā)) ā sup((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < ) ā (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)})) |
25 | 23, 24 | mpan 688 |
. . . 4
ā¢
(((āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā Fin ā§ (āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
ā§ (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā) ā sup((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < ) ā (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)})) |
26 | 19, 22, 25 | mp3an13 1452 |
. . 3
ā¢ ((āÆ
ā {š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}) ā ā
ā sup((āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < ) ā (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)})) |
27 | 16, 26 | syl 17 |
. 2
ā¢ ((š ā§ š“ ā (1...š)) ā sup((āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)}), ā, < ) ā (āÆ ā
{š¦ ā š«
(1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)})) |
28 | 5, 27 | eqeltrd 2833 |
1
ā¢ ((š ā§ š“ ā (1...š)) ā (š¾āš“) ā (āÆ ā {š¦ ā š« (1...š“) ā£ ((š¹ ā¾ š¦) Isom < , š (š¦, (š¹ ā š¦)) ā§ š“ ā š¦)})) |