Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem5 Structured version   Visualization version   GIF version

Theorem erdszelem5 34861
Description: Lemma for erdsze 34868. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (šœ‘ → š‘ ∈ ā„•)
erdsze.f (šœ‘ → š¹:(1...š‘)–1-1ā†’ā„)
erdszelem.k š¾ = (š‘„ ∈ (1...š‘) ↦ sup((♯ ā€œ {š‘¦ ∈ š’« (1...š‘„) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š‘„ ∈ š‘¦)}), ā„, < ))
erdszelem.o š‘‚ Or ā„
Assertion
Ref Expression
erdszelem5 ((šœ‘ ∧ š“ ∈ (1...š‘)) → (š¾ā€˜š“) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
Distinct variable groups:   š‘„,š‘¦,š¹   š‘„,š“,š‘¦   š‘„,š‘‚,š‘¦   š‘„,š‘,š‘¦   šœ‘,š‘„,š‘¦
Allowed substitution hints:   š¾(š‘„,š‘¦)

Proof of Theorem erdszelem5
StepHypRef Expression
1 erdsze.n . . . 4 (šœ‘ → š‘ ∈ ā„•)
2 erdsze.f . . . 4 (šœ‘ → š¹:(1...š‘)–1-1ā†’ā„)
3 erdszelem.k . . . 4 š¾ = (š‘„ ∈ (1...š‘) ↦ sup((♯ ā€œ {š‘¦ ∈ š’« (1...š‘„) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š‘„ ∈ š‘¦)}), ā„, < ))
41, 2, 3erdszelem3 34859 . . 3 (š“ ∈ (1...š‘) → (š¾ā€˜š“) = sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ))
54adantl 480 . 2 ((šœ‘ ∧ š“ ∈ (1...š‘)) → (š¾ā€˜š“) = sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ))
6 snex 5427 . . . . . 6 {š“} ∈ V
7 hashf 14327 . . . . . . 7 ♯:V⟶(ā„•0 ∪ {+āˆž})
87fdmi 6728 . . . . . 6 dom ♯ = V
96, 8eleqtrri 2824 . . . . 5 {š“} ∈ dom ♯
10 erdszelem.o . . . . . 6 š‘‚ Or ā„
111, 2, 3, 10erdszelem4 34860 . . . . 5 ((šœ‘ ∧ š“ ∈ (1...š‘)) → {š“} ∈ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)})
12 inelcm 4460 . . . . 5 (({š“} ∈ dom ♯ ∧ {š“} ∈ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) → (dom ♯ ∩ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ…)
139, 11, 12sylancr 585 . . . 4 ((šœ‘ ∧ š“ ∈ (1...š‘)) → (dom ♯ ∩ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ…)
14 imadisj 6078 . . . . 5 ((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) = āˆ… ↔ (dom ♯ ∩ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) = āˆ…)
1514necon3bii 2983 . . . 4 ((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ… ↔ (dom ♯ ∩ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ…)
1613, 15sylibr 233 . . 3 ((šœ‘ ∧ š“ ∈ (1...š‘)) → (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ…)
17 eqid 2725 . . . . . 6 {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)} = {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}
1817erdszelem2 34858 . . . . 5 ((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ∈ Fin ∧ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) āŠ† ā„•)
1918simpli 482 . . . 4 (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ∈ Fin
2018simpri 484 . . . . 5 (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) āŠ† ā„•
21 nnssre 12244 . . . . 5 ā„• āŠ† ā„
2220, 21sstri 3982 . . . 4 (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) āŠ† ā„
23 ltso 11322 . . . . 5 < Or ā„
24 fisupcl 9490 . . . . 5 (( < Or ā„ ∧ ((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ∈ Fin ∧ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ… ∧ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) āŠ† ā„)) → sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
2523, 24mpan 688 . . . 4 (((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ∈ Fin ∧ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ… ∧ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) āŠ† ā„) → sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
2619, 22, 25mp3an13 1448 . . 3 ((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}) ≠ āˆ… → sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
2716, 26syl 17 . 2 ((šœ‘ ∧ š“ ∈ (1...š‘)) → sup((♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}), ā„, < ) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
285, 27eqeltrd 2825 1 ((šœ‘ ∧ š“ ∈ (1...š‘)) → (š¾ā€˜š“) ∈ (♯ ā€œ {š‘¦ ∈ š’« (1...š“) ∣ ((š¹ ↾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) ∧ š“ ∈ š‘¦)}))
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ≠ wne 2930  {crab 3419  Vcvv 3463   ∪ cun 3938   ∩ cin 3939   āŠ† wss 3940  āˆ…c0 4318  š’« cpw 4598  {csn 4624   ↦ cmpt 5226   Or wor 5583  dom cdm 5672   ↾ cres 5674   ā€œ cima 5675  ā€“1-1→wf1 6539  ā€˜cfv 6542   Isom wiso 6543  (class class class)co 7415  Fincfn 8960  supcsup 9461  ā„cr 11135  1c1 11137  +āˆžcpnf 11273   < clt 11276  ā„•cn 12240  ā„•0cn0 12500  ...cfz 13514  ā™Æchash 14319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-1st 7989  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-sup 9463  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13515  df-hash 14320
This theorem is referenced by:  erdszelem6  34862  erdszelem7  34863  erdszelem8  34864
  Copyright terms: Public domain W3C validator