Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem5 Structured version   Visualization version   GIF version

Theorem erdszelem5 34174
Description: Lemma for erdsze 34181. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (šœ‘ ā†’ š‘ āˆˆ ā„•)
erdsze.f (šœ‘ ā†’ š¹:(1...š‘)ā€“1-1ā†’ā„)
erdszelem.k š¾ = (š‘„ āˆˆ (1...š‘) ā†¦ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š‘„) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š‘„ āˆˆ š‘¦)}), ā„, < ))
erdszelem.o š‘‚ Or ā„
Assertion
Ref Expression
erdszelem5 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ (š¾ā€˜š“) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
Distinct variable groups:   š‘„,š‘¦,š¹   š‘„,š“,š‘¦   š‘„,š‘‚,š‘¦   š‘„,š‘,š‘¦   šœ‘,š‘„,š‘¦
Allowed substitution hints:   š¾(š‘„,š‘¦)

Proof of Theorem erdszelem5
StepHypRef Expression
1 erdsze.n . . . 4 (šœ‘ ā†’ š‘ āˆˆ ā„•)
2 erdsze.f . . . 4 (šœ‘ ā†’ š¹:(1...š‘)ā€“1-1ā†’ā„)
3 erdszelem.k . . . 4 š¾ = (š‘„ āˆˆ (1...š‘) ā†¦ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š‘„) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š‘„ āˆˆ š‘¦)}), ā„, < ))
41, 2, 3erdszelem3 34172 . . 3 (š“ āˆˆ (1...š‘) ā†’ (š¾ā€˜š“) = sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ))
54adantl 482 . 2 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ (š¾ā€˜š“) = sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ))
6 snex 5430 . . . . . 6 {š“} āˆˆ V
7 hashf 14294 . . . . . . 7 ā™Æ:VāŸ¶(ā„•0 āˆŖ {+āˆž})
87fdmi 6726 . . . . . 6 dom ā™Æ = V
96, 8eleqtrri 2832 . . . . 5 {š“} āˆˆ dom ā™Æ
10 erdszelem.o . . . . . 6 š‘‚ Or ā„
111, 2, 3, 10erdszelem4 34173 . . . . 5 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ {š“} āˆˆ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)})
12 inelcm 4463 . . . . 5 (({š“} āˆˆ dom ā™Æ āˆ§ {š“} āˆˆ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā†’ (dom ā™Æ āˆ© {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ…)
139, 11, 12sylancr 587 . . . 4 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ (dom ā™Æ āˆ© {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ…)
14 imadisj 6076 . . . . 5 ((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) = āˆ… ā†” (dom ā™Æ āˆ© {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) = āˆ…)
1514necon3bii 2993 . . . 4 ((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ… ā†” (dom ā™Æ āˆ© {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ…)
1613, 15sylibr 233 . . 3 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ…)
17 eqid 2732 . . . . . 6 {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)} = {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}
1817erdszelem2 34171 . . . . 5 ((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āˆˆ Fin āˆ§ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āŠ† ā„•)
1918simpli 484 . . . 4 (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āˆˆ Fin
2018simpri 486 . . . . 5 (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āŠ† ā„•
21 nnssre 12212 . . . . 5 ā„• āŠ† ā„
2220, 21sstri 3990 . . . 4 (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āŠ† ā„
23 ltso 11290 . . . . 5 < Or ā„
24 fisupcl 9460 . . . . 5 (( < Or ā„ āˆ§ ((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āˆˆ Fin āˆ§ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ… āˆ§ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āŠ† ā„)) ā†’ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
2523, 24mpan 688 . . . 4 (((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āˆˆ Fin āˆ§ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ… āˆ§ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) āŠ† ā„) ā†’ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
2619, 22, 25mp3an13 1452 . . 3 ((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}) ā‰  āˆ… ā†’ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
2716, 26syl 17 . 2 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ sup((ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}), ā„, < ) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
285, 27eqeltrd 2833 1 ((šœ‘ āˆ§ š“ āˆˆ (1...š‘)) ā†’ (š¾ā€˜š“) āˆˆ (ā™Æ ā€œ {š‘¦ āˆˆ š’« (1...š“) āˆ£ ((š¹ ā†¾ š‘¦) Isom < , š‘‚ (š‘¦, (š¹ ā€œ š‘¦)) āˆ§ š“ āˆˆ š‘¦)}))
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   āˆ§ wa 396   āˆ§ w3a 1087   = wceq 1541   āˆˆ wcel 2106   ā‰  wne 2940  {crab 3432  Vcvv 3474   āˆŖ cun 3945   āˆ© cin 3946   āŠ† wss 3947  āˆ…c0 4321  š’« cpw 4601  {csn 4627   ā†¦ cmpt 5230   Or wor 5586  dom cdm 5675   ā†¾ cres 5677   ā€œ cima 5678  ā€“1-1ā†’wf1 6537  ā€˜cfv 6540   Isom wiso 6541  (class class class)co 7405  Fincfn 8935  supcsup 9431  ā„cr 11105  1c1 11107  +āˆžcpnf 11241   < clt 11244  ā„•cn 12208  ā„•0cn0 12468  ...cfz 13480  ā™Æchash 14286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287
This theorem is referenced by:  erdszelem6  34175  erdszelem7  34176  erdszelem8  34177
  Copyright terms: Public domain W3C validator