Proof of Theorem erdszelem5
Step | Hyp | Ref
| Expression |
1 | | erdsze.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | erdsze.f |
. . . 4
⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) |
3 | | erdszelem.k |
. . . 4
⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) |
4 | 1, 2, 3 | erdszelem3 33155 |
. . 3
⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
5 | 4 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) |
6 | | snex 5354 |
. . . . . 6
⊢ {𝐴} ∈ V |
7 | | hashf 14052 |
. . . . . . 7
⊢
♯:V⟶(ℕ0 ∪ {+∞}) |
8 | 7 | fdmi 6612 |
. . . . . 6
⊢ dom
♯ = V |
9 | 6, 8 | eleqtrri 2838 |
. . . . 5
⊢ {𝐴} ∈ dom
♯ |
10 | | erdszelem.o |
. . . . . 6
⊢ 𝑂 Or ℝ |
11 | 1, 2, 3, 10 | erdszelem4 33156 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) |
12 | | inelcm 4398 |
. . . . 5
⊢ (({𝐴} ∈ dom ♯ ∧
{𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) → (dom ♯ ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
13 | 9, 11, 12 | sylancr 587 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (dom ♯ ∩ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
14 | | imadisj 5988 |
. . . . 5
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) = ∅ ↔ (dom ♯ ∩
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) = ∅) |
15 | 14 | necon3bii 2996 |
. . . 4
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ↔ (dom ♯ ∩
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
16 | 13, 15 | sylibr 233 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅) |
17 | | eqid 2738 |
. . . . . 6
⊢ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} |
18 | 17 | erdszelem2 33154 |
. . . . 5
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℕ) |
19 | 18 | simpli 484 |
. . . 4
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin |
20 | 18 | simpri 486 |
. . . . 5
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℕ |
21 | | nnssre 11977 |
. . . . 5
⊢ ℕ
⊆ ℝ |
22 | 20, 21 | sstri 3930 |
. . . 4
⊢ (♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ |
23 | | ltso 11055 |
. . . . 5
⊢ < Or
ℝ |
24 | | fisupcl 9228 |
. . . . 5
⊢ (( <
Or ℝ ∧ ((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ)) → sup((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
25 | 23, 24 | mpan 687 |
. . . 4
⊢
(((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ ∧ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ⊆ ℝ) → sup((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
26 | 19, 22, 25 | mp3an13 1451 |
. . 3
⊢ ((♯
“ {𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) ≠ ∅ → sup((♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
27 | 16, 26 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < ) ∈ (♯ “
{𝑦 ∈ 𝒫
(1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |
28 | 5, 27 | eqeltrd 2839 |
1
⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) |