Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem11 Structured version   Visualization version   GIF version

Theorem poimirlem11 34046
 Description: Lemma for poimir 34068 connecting walks that could yield from a given cube a given face opposite the first vertex of the walk. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimirlem22.s 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
poimirlem22.1 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))
poimirlem12.2 (𝜑𝑇𝑆)
poimirlem11.3 (𝜑 → (2nd𝑇) = 0)
poimirlem11.4 (𝜑𝑈𝑆)
poimirlem11.5 (𝜑 → (2nd𝑈) = 0)
poimirlem11.6 (𝜑𝑀 ∈ (1...𝑁))
Assertion
Ref Expression
poimirlem11 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
Distinct variable groups:   𝑓,𝑗,𝑡,𝑦   𝜑,𝑗,𝑦   𝑗,𝐹,𝑦   𝑗,𝑀,𝑦   𝑗,𝑁,𝑦   𝑇,𝑗,𝑦   𝑈,𝑗,𝑦   𝜑,𝑡   𝑓,𝐾,𝑗,𝑡   𝑓,𝑀,𝑡   𝑓,𝑁,𝑡   𝑇,𝑓   𝑈,𝑓   𝑓,𝐹,𝑡   𝑡,𝑇   𝑡,𝑈   𝑆,𝑗,𝑡,𝑦
Allowed substitution hints:   𝜑(𝑓)   𝑆(𝑓)   𝐾(𝑦)

Proof of Theorem poimirlem11
StepHypRef Expression
1 eldif 3802 . . . . . . 7 (𝑦 ∈ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ↔ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
2 imassrn 5731 . . . . . . . . . . . 12 ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ran (2nd ‘(1st𝑇))
3 poimirlem12.2 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇𝑆)
4 elrabi 3567 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
5 poimirlem22.s . . . . . . . . . . . . . . . . . . 19 𝑆 = {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))}
64, 5eleq2s 2877 . . . . . . . . . . . . . . . . . 18 (𝑇𝑆𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
73, 6syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
8 xp1st 7477 . . . . . . . . . . . . . . . . 17 (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
97, 8syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
10 xp2nd 7478 . . . . . . . . . . . . . . . 16 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
119, 10syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
12 fvex 6459 . . . . . . . . . . . . . . . 16 (2nd ‘(1st𝑇)) ∈ V
13 f1oeq1 6380 . . . . . . . . . . . . . . . 16 (𝑓 = (2nd ‘(1st𝑇)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁)))
1412, 13elab 3558 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
1511, 14sylib 210 . . . . . . . . . . . . . 14 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁))
16 f1of 6391 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
1715, 16syl 17 . . . . . . . . . . . . 13 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)⟶(1...𝑁))
1817frnd 6298 . . . . . . . . . . . 12 (𝜑 → ran (2nd ‘(1st𝑇)) ⊆ (1...𝑁))
192, 18syl5ss 3832 . . . . . . . . . . 11 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ (1...𝑁))
20 poimirlem11.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑈𝑆)
21 elrabi 3567 . . . . . . . . . . . . . . . . . 18 (𝑈 ∈ {𝑡 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∣ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))} → 𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2221, 5eleq2s 2877 . . . . . . . . . . . . . . . . 17 (𝑈𝑆𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
2320, 22syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)))
24 xp1st 7477 . . . . . . . . . . . . . . . 16 (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
26 xp2nd 7478 . . . . . . . . . . . . . . 15 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
2725, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → (2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)})
28 fvex 6459 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑈)) ∈ V
29 f1oeq1 6380 . . . . . . . . . . . . . . 15 (𝑓 = (2nd ‘(1st𝑈)) → (𝑓:(1...𝑁)–1-1-onto→(1...𝑁) ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁)))
3028, 29elab 3558 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑈)) ∈ {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)} ↔ (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
3127, 30sylib 210 . . . . . . . . . . . . 13 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁))
32 f1ofo 6398 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁))
3331, 32syl 17 . . . . . . . . . . . 12 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁))
34 foima 6371 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = (1...𝑁))
3533, 34syl 17 . . . . . . . . . . 11 (𝜑 → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = (1...𝑁))
3619, 35sseqtr4d 3861 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑁)))
3736ssdifd 3969 . . . . . . . . 9 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ⊆ (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
38 dff1o3 6397 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑈)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑈))))
3938simprbi 492 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑈)))
4031, 39syl 17 . . . . . . . . . . 11 (𝜑 → Fun (2nd ‘(1st𝑈)))
41 imadif 6218 . . . . . . . . . . 11 (Fun (2nd ‘(1st𝑈)) → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
4240, 41syl 17 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
43 difun2 4272 . . . . . . . . . . . 12 ((((𝑀 + 1)...𝑁) ∪ (1...𝑀)) ∖ (1...𝑀)) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀))
44 poimirlem11.6 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (1...𝑁))
45 fzsplit 12684 . . . . . . . . . . . . . . 15 (𝑀 ∈ (1...𝑁) → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
4644, 45syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...𝑁) = ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)))
47 uncom 3980 . . . . . . . . . . . . . 14 ((1...𝑀) ∪ ((𝑀 + 1)...𝑁)) = (((𝑀 + 1)...𝑁) ∪ (1...𝑀))
4846, 47syl6eq 2830 . . . . . . . . . . . . 13 (𝜑 → (1...𝑁) = (((𝑀 + 1)...𝑁) ∪ (1...𝑀)))
4948difeq1d 3950 . . . . . . . . . . . 12 (𝜑 → ((1...𝑁) ∖ (1...𝑀)) = ((((𝑀 + 1)...𝑁) ∪ (1...𝑀)) ∖ (1...𝑀)))
50 incom 4028 . . . . . . . . . . . . . 14 (((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))
51 elfznn 12687 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
5244, 51syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℕ)
5352nnred 11391 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℝ)
5453ltp1d 11308 . . . . . . . . . . . . . . 15 (𝜑𝑀 < (𝑀 + 1))
55 fzdisj 12685 . . . . . . . . . . . . . . 15 (𝑀 < (𝑀 + 1) → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5654, 55syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((1...𝑀) ∩ ((𝑀 + 1)...𝑁)) = ∅)
5750, 56syl5eq 2826 . . . . . . . . . . . . 13 (𝜑 → (((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ∅)
58 disj3 4246 . . . . . . . . . . . . 13 ((((𝑀 + 1)...𝑁) ∩ (1...𝑀)) = ∅ ↔ ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀)))
5957, 58sylib 210 . . . . . . . . . . . 12 (𝜑 → ((𝑀 + 1)...𝑁) = (((𝑀 + 1)...𝑁) ∖ (1...𝑀)))
6043, 49, 593eqtr4a 2840 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ (1...𝑀)) = ((𝑀 + 1)...𝑁))
6160imaeq2d 5720 . . . . . . . . . 10 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑁) ∖ (1...𝑀))) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
6242, 61eqtr3d 2816 . . . . . . . . 9 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑁)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
6337, 62sseqtrd 3860 . . . . . . . 8 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ⊆ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
6463sselda 3821 . . . . . . 7 ((𝜑𝑦 ∈ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∖ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
651, 64sylan2br 588 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
66 fveq2 6446 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (2nd𝑡) = (2nd𝑈))
6766breq2d 4898 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑈)))
6867ifbid 4329 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑈 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)))
6968csbeq1d 3758 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
70 2fveq3 6451 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑈)))
71 2fveq3 6451 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑈 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑈)))
7271imaeq1d 5719 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑗)))
7372xpeq1d 5384 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}))
7471imaeq1d 5719 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑈 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)))
7574xpeq1d 5384 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑈 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))
7673, 75uneq12d 3991 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑈 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))
7770, 76oveq12d 6940 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑈 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7877csbeq2dv 4217 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑈if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
7969, 78eqtrd 2814 . . . . . . . . . . . . . . 15 (𝑡 = 𝑈if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
8079mpteq2dv 4980 . . . . . . . . . . . . . 14 (𝑡 = 𝑈 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8180eqeq2d 2788 . . . . . . . . . . . . 13 (𝑡 = 𝑈 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8281, 5elrab2 3576 . . . . . . . . . . . 12 (𝑈𝑆 ↔ (𝑈 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
8382simprbi 492 . . . . . . . . . . 11 (𝑈𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
8420, 83syl 17 . . . . . . . . . 10 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})))))
85 poimirlem11.5 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑈) = 0)
86 breq12 4891 . . . . . . . . . . . . . . . 16 ((𝑦 = (𝑀 − 1) ∧ (2nd𝑈) = 0) → (𝑦 < (2nd𝑈) ↔ (𝑀 − 1) < 0))
8785, 86sylan2 586 . . . . . . . . . . . . . . 15 ((𝑦 = (𝑀 − 1) ∧ 𝜑) → (𝑦 < (2nd𝑈) ↔ (𝑀 − 1) < 0))
8887ancoms 452 . . . . . . . . . . . . . 14 ((𝜑𝑦 = (𝑀 − 1)) → (𝑦 < (2nd𝑈) ↔ (𝑀 − 1) < 0))
89 oveq1 6929 . . . . . . . . . . . . . . 15 (𝑦 = (𝑀 − 1) → (𝑦 + 1) = ((𝑀 − 1) + 1))
9052nncnd 11392 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ ℂ)
91 npcan1 10800 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℂ → ((𝑀 − 1) + 1) = 𝑀)
9290, 91syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑀 − 1) + 1) = 𝑀)
9389, 92sylan9eqr 2836 . . . . . . . . . . . . . 14 ((𝜑𝑦 = (𝑀 − 1)) → (𝑦 + 1) = 𝑀)
9488, 93ifbieq2d 4332 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < 0, 𝑦, 𝑀))
9552nnzd 11833 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
96 poimir.0 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ)
9796nnzd 11833 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
98 elfzm1b 12736 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
9995, 97, 98syl2anc 579 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 ∈ (1...𝑁) ↔ (𝑀 − 1) ∈ (0...(𝑁 − 1))))
10044, 99mpbid 224 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ (0...(𝑁 − 1)))
101 elfzle1 12661 . . . . . . . . . . . . . . . . 17 ((𝑀 − 1) ∈ (0...(𝑁 − 1)) → 0 ≤ (𝑀 − 1))
102100, 101syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (𝑀 − 1))
103 0red 10380 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ∈ ℝ)
104 nnm1nn0 11685 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
10552, 104syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 − 1) ∈ ℕ0)
106105nn0red 11703 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 − 1) ∈ ℝ)
107103, 106lenltd 10522 . . . . . . . . . . . . . . . 16 (𝜑 → (0 ≤ (𝑀 − 1) ↔ ¬ (𝑀 − 1) < 0))
108102, 107mpbid 224 . . . . . . . . . . . . . . 15 (𝜑 → ¬ (𝑀 − 1) < 0)
109108iffalsed 4318 . . . . . . . . . . . . . 14 (𝜑 → if((𝑀 − 1) < 0, 𝑦, 𝑀) = 𝑀)
110109adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑀 − 1)) → if((𝑀 − 1) < 0, 𝑦, 𝑀) = 𝑀)
11194, 110eqtrd 2814 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) = 𝑀)
112111csbeq1d 3758 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))))
113 oveq2 6930 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑀 → (1...𝑗) = (1...𝑀))
114113imaeq2d 5720 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑈)) “ (1...𝑗)) = ((2nd ‘(1st𝑈)) “ (1...𝑀)))
115114xpeq1d 5384 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}))
116 oveq1 6929 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑀 → (𝑗 + 1) = (𝑀 + 1))
117116oveq1d 6937 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑀 → ((𝑗 + 1)...𝑁) = ((𝑀 + 1)...𝑁))
118117imaeq2d 5720 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
119118xpeq1d 5384 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))
120115, 119uneq12d 3991 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))
121120oveq2d 6938 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
122121adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑀) → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
12344, 122csbied 3778 . . . . . . . . . . . 12 (𝜑𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
124123adantr 474 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → 𝑀 / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
125112, 124eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑈), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
126 ovexd 6956 . . . . . . . . . 10 (𝜑 → ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V)
12784, 125, 100, 126fvmptd 6548 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑀 − 1)) = ((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))))
128127fveq1d 6448 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
129128adantr 474 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
130 imassrn 5731 . . . . . . . . . 10 ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ⊆ ran (2nd ‘(1st𝑈))
131 f1of 6391 . . . . . . . . . . . 12 ((2nd ‘(1st𝑈)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑈)):(1...𝑁)⟶(1...𝑁))
13231, 131syl 17 . . . . . . . . . . 11 (𝜑 → (2nd ‘(1st𝑈)):(1...𝑁)⟶(1...𝑁))
133132frnd 6298 . . . . . . . . . 10 (𝜑 → ran (2nd ‘(1st𝑈)) ⊆ (1...𝑁))
134130, 133syl5ss 3832 . . . . . . . . 9 (𝜑 → ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ⊆ (1...𝑁))
135134sselda 3821 . . . . . . . 8 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → 𝑦 ∈ (1...𝑁))
136 xp1st 7477 . . . . . . . . . . . 12 ((1st𝑈) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
13725, 136syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
138 elmapfn 8163 . . . . . . . . . . 11 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑈)) Fn (1...𝑁))
139137, 138syl 17 . . . . . . . . . 10 (𝜑 → (1st ‘(1st𝑈)) Fn (1...𝑁))
140139adantr 474 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (1st ‘(1st𝑈)) Fn (1...𝑁))
141 1ex 10372 . . . . . . . . . . . . . 14 1 ∈ V
142 fnconstg 6343 . . . . . . . . . . . . . 14 (1 ∈ V → (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)))
143141, 142ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀))
144 c0ex 10370 . . . . . . . . . . . . . 14 0 ∈ V
145 fnconstg 6343 . . . . . . . . . . . . . 14 (0 ∈ V → (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
146144, 145ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))
147143, 146pm3.2i 464 . . . . . . . . . . . 12 ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
148 imain 6219 . . . . . . . . . . . . . 14 (Fun (2nd ‘(1st𝑈)) → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
14940, 148syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
15056imaeq2d 5720 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑈)) “ ∅))
151 ima0 5735 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑈)) “ ∅) = ∅
152150, 151syl6eq 2830 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ∅)
153149, 152eqtr3d 2816 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅)
154 fnun 6243 . . . . . . . . . . . 12 ((((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
155147, 153, 154sylancr 581 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))))
156 imaundi 5799 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))
15746imaeq2d 5720 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑈)) “ (1...𝑁)) = ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))))
158157, 35eqtr3d 2816 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑈)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (1...𝑁))
159156, 158syl5eqr 2828 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = (1...𝑁))
160159fneq2d 6227 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑈)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
161155, 160mpbid 224 . . . . . . . . . 10 (𝜑 → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
162161adantr 474 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
163 ovexd 6956 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (1...𝑁) ∈ V)
164 inidm 4043 . . . . . . . . 9 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
165 eqidd 2779 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
166 fvun2 6530 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑈)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
167143, 146, 166mp3an12 1524 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑈)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
168153, 167sylan 575 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦))
169144fvconst2 6741 . . . . . . . . . . . 12 (𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) → ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦) = 0)
170169adantl 475 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})‘𝑦) = 0)
171168, 170eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 0)
172171adantr 474 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 0)
173140, 162, 163, 163, 164, 165, 172ofval 7183 . . . . . . . 8 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) ∧ 𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑈))‘𝑦) + 0))
174135, 173mpdan 677 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((1st ‘(1st𝑈)) ∘𝑓 + ((((2nd ‘(1st𝑈)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑈))‘𝑦) + 0))
175 elmapi 8162 . . . . . . . . . . . . 13 ((1st ‘(1st𝑈)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
176137, 175syl 17 . . . . . . . . . . . 12 (𝜑 → (1st ‘(1st𝑈)):(1...𝑁)⟶(0..^𝐾))
177176ffvelrnda 6623 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ (0..^𝐾))
178 elfzonn0 12832 . . . . . . . . . . 11 (((1st ‘(1st𝑈))‘𝑦) ∈ (0..^𝐾) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℕ0)
179177, 178syl 17 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℕ0)
180179nn0cnd 11704 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℂ)
181135, 180syldan 585 . . . . . . . 8 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((1st ‘(1st𝑈))‘𝑦) ∈ ℂ)
182181addid1d 10576 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → (((1st ‘(1st𝑈))‘𝑦) + 0) = ((1st ‘(1st𝑈))‘𝑦))
183129, 174, 1823eqtrd 2818 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑈)) “ ((𝑀 + 1)...𝑁))) → ((𝐹‘(𝑀 − 1))‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
18465, 183syldan 585 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((𝐹‘(𝑀 − 1))‘𝑦) = ((1st ‘(1st𝑈))‘𝑦))
185 fveq2 6446 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (2nd𝑡) = (2nd𝑇))
186185breq2d 4898 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (𝑦 < (2nd𝑡) ↔ 𝑦 < (2nd𝑇)))
187186ifbid 4329 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)))
188187csbeq1d 3758 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))))
189 2fveq3 6451 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → (1st ‘(1st𝑡)) = (1st ‘(1st𝑇)))
190 2fveq3 6451 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑇 → (2nd ‘(1st𝑡)) = (2nd ‘(1st𝑇)))
191190imaeq1d 5719 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑗)))
192191xpeq1d 5384 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}))
193190imaeq1d 5719 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑇 → ((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)))
194193xpeq1d 5384 . . . . . . . . . . . . . . . . . . 19 (𝑡 = 𝑇 → (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))
195192, 194uneq12d 3991 . . . . . . . . . . . . . . . . . 18 (𝑡 = 𝑇 → ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))
196189, 195oveq12d 6940 . . . . . . . . . . . . . . . . 17 (𝑡 = 𝑇 → ((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
197196csbeq2dv 4217 . . . . . . . . . . . . . . . 16 (𝑡 = 𝑇if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
198188, 197eqtrd 2814 . . . . . . . . . . . . . . 15 (𝑡 = 𝑇if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0}))) = if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
199198mpteq2dv 4980 . . . . . . . . . . . . . 14 (𝑡 = 𝑇 → (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
200199eqeq2d 2788 . . . . . . . . . . . . 13 (𝑡 = 𝑇 → (𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑡), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑡)) ∘𝑓 + ((((2nd ‘(1st𝑡)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑡)) “ ((𝑗 + 1)...𝑁)) × {0})))) ↔ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
201200, 5elrab2 3576 . . . . . . . . . . . 12 (𝑇𝑆 ↔ (𝑇 ∈ ((((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) × (0...𝑁)) ∧ 𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))))
202201simprbi 492 . . . . . . . . . . 11 (𝑇𝑆𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
2033, 202syl 17 . . . . . . . . . 10 (𝜑𝐹 = (𝑦 ∈ (0...(𝑁 − 1)) ↦ if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})))))
204 poimirlem11.3 . . . . . . . . . . . . . . . 16 (𝜑 → (2nd𝑇) = 0)
205 breq12 4891 . . . . . . . . . . . . . . . 16 ((𝑦 = (𝑀 − 1) ∧ (2nd𝑇) = 0) → (𝑦 < (2nd𝑇) ↔ (𝑀 − 1) < 0))
206204, 205sylan2 586 . . . . . . . . . . . . . . 15 ((𝑦 = (𝑀 − 1) ∧ 𝜑) → (𝑦 < (2nd𝑇) ↔ (𝑀 − 1) < 0))
207206ancoms 452 . . . . . . . . . . . . . 14 ((𝜑𝑦 = (𝑀 − 1)) → (𝑦 < (2nd𝑇) ↔ (𝑀 − 1) < 0))
208207, 93ifbieq2d 4332 . . . . . . . . . . . . 13 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = if((𝑀 − 1) < 0, 𝑦, 𝑀))
209208, 110eqtrd 2814 . . . . . . . . . . . 12 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) = 𝑀)
210209csbeq1d 3758 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))))
211113imaeq2d 5720 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ (1...𝑗)) = ((2nd ‘(1st𝑇)) “ (1...𝑀)))
212211xpeq1d 5384 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}))
213117imaeq2d 5720 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑀 → ((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) = ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
214213xpeq1d 5384 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑀 → (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}) = (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))
215212, 214uneq12d 3991 . . . . . . . . . . . . . . 15 (𝑗 = 𝑀 → ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0})) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))
216215oveq2d 6938 . . . . . . . . . . . . . 14 (𝑗 = 𝑀 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
217216adantl 475 . . . . . . . . . . . . 13 ((𝜑𝑗 = 𝑀) → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
21844, 217csbied 3778 . . . . . . . . . . . 12 (𝜑𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
219218adantr 474 . . . . . . . . . . 11 ((𝜑𝑦 = (𝑀 − 1)) → 𝑀 / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
220210, 219eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑦 = (𝑀 − 1)) → if(𝑦 < (2nd𝑇), 𝑦, (𝑦 + 1)) / 𝑗((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑗 + 1)...𝑁)) × {0}))) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
221 ovexd 6956 . . . . . . . . . 10 (𝜑 → ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))) ∈ V)
222203, 220, 100, 221fvmptd 6548 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑀 − 1)) = ((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))))
223222fveq1d 6448 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
224223adantr 474 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦))
22519sselda 3821 . . . . . . . 8 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → 𝑦 ∈ (1...𝑁))
226 xp1st 7477 . . . . . . . . . . . 12 ((1st𝑇) ∈ (((0..^𝐾) ↑𝑚 (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
2279, 226syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)))
228 elmapfn 8163 . . . . . . . . . . 11 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)) Fn (1...𝑁))
229227, 228syl 17 . . . . . . . . . 10 (𝜑 → (1st ‘(1st𝑇)) Fn (1...𝑁))
230229adantr 474 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (1st ‘(1st𝑇)) Fn (1...𝑁))
231 fnconstg 6343 . . . . . . . . . . . . . 14 (1 ∈ V → (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)))
232141, 231ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀))
233 fnconstg 6343 . . . . . . . . . . . . . 14 (0 ∈ V → (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
234144, 233ax-mp 5 . . . . . . . . . . . . 13 (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))
235232, 234pm3.2i 464 . . . . . . . . . . . 12 ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
236 dff1o3 6397 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) ↔ ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) ∧ Fun (2nd ‘(1st𝑇))))
237236simprbi 492 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → Fun (2nd ‘(1st𝑇)))
23815, 237syl 17 . . . . . . . . . . . . . 14 (𝜑 → Fun (2nd ‘(1st𝑇)))
239 imain 6219 . . . . . . . . . . . . . 14 (Fun (2nd ‘(1st𝑇)) → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
240238, 239syl 17 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
24156imaeq2d 5720 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ((2nd ‘(1st𝑇)) “ ∅))
242 ima0 5735 . . . . . . . . . . . . . 14 ((2nd ‘(1st𝑇)) “ ∅) = ∅
243241, 242syl6eq 2830 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∩ ((𝑀 + 1)...𝑁))) = ∅)
244240, 243eqtr3d 2816 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅)
245 fnun 6243 . . . . . . . . . . . 12 ((((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ∧ (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
246235, 244, 245sylancr 581 . . . . . . . . . . 11 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))))
247 imaundi 5799 . . . . . . . . . . . . 13 ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)))
24846imaeq2d 5720 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))))
249 f1ofo 6398 . . . . . . . . . . . . . . . 16 ((2nd ‘(1st𝑇)):(1...𝑁)–1-1-onto→(1...𝑁) → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
25015, 249syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁))
251 foima 6371 . . . . . . . . . . . . . . 15 ((2nd ‘(1st𝑇)):(1...𝑁)–onto→(1...𝑁) → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
252250, 251syl 17 . . . . . . . . . . . . . 14 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑁)) = (1...𝑁))
253248, 252eqtr3d 2816 . . . . . . . . . . . . 13 (𝜑 → ((2nd ‘(1st𝑇)) “ ((1...𝑀) ∪ ((𝑀 + 1)...𝑁))) = (1...𝑁))
254247, 253syl5eqr 2828 . . . . . . . . . . . 12 (𝜑 → (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = (1...𝑁))
255254fneq2d 6227 . . . . . . . . . . 11 (𝜑 → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (((2nd ‘(1st𝑇)) “ (1...𝑀)) ∪ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) ↔ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁)))
256246, 255mpbid 224 . . . . . . . . . 10 (𝜑 → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
257256adantr 474 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})) Fn (1...𝑁))
258 ovexd 6956 . . . . . . . . 9 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (1...𝑁) ∈ V)
259 eqidd 2779 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
260 fvun1 6529 . . . . . . . . . . . . 13 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) Fn ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}) Fn ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) ∧ ((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
261232, 234, 260mp3an12 1524 . . . . . . . . . . . 12 (((((2nd ‘(1st𝑇)) “ (1...𝑀)) ∩ ((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁))) = ∅ ∧ 𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
262244, 261sylan 575 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦))
263141fvconst2 6741 . . . . . . . . . . . 12 (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦) = 1)
264263adantl 475 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1})‘𝑦) = 1)
265262, 264eqtrd 2814 . . . . . . . . . 10 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 1)
266265adantr 474 . . . . . . . . 9 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → (((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0}))‘𝑦) = 1)
267230, 257, 258, 258, 164, 259, 266ofval 7183 . . . . . . . 8 (((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) ∧ 𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
268225, 267mpdan 677 . . . . . . 7 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((1st ‘(1st𝑇)) ∘𝑓 + ((((2nd ‘(1st𝑇)) “ (1...𝑀)) × {1}) ∪ (((2nd ‘(1st𝑇)) “ ((𝑀 + 1)...𝑁)) × {0})))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
269224, 268eqtrd 2814 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
270269adantrr 707 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((𝐹‘(𝑀 − 1))‘𝑦) = (((1st ‘(1st𝑇))‘𝑦) + 1))
271 poimirlem22.1 . . . . . . . . 9 (𝜑𝐹:(0...(𝑁 − 1))⟶((0...𝐾) ↑𝑚 (1...𝑁)))
27296, 5, 271, 20, 85poimirlem10 34045 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑁 − 1)) ∘𝑓 − ((1...𝑁) × {1})) = (1st ‘(1st𝑈)))
27396, 5, 271, 3, 204poimirlem10 34045 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑁 − 1)) ∘𝑓 − ((1...𝑁) × {1})) = (1st ‘(1st𝑇)))
274272, 273eqtr3d 2816 . . . . . . 7 (𝜑 → (1st ‘(1st𝑈)) = (1st ‘(1st𝑇)))
275274fveq1d 6448 . . . . . 6 (𝜑 → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
276275adantr 474 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ((1st ‘(1st𝑈))‘𝑦) = ((1st ‘(1st𝑇))‘𝑦))
277184, 270, 2763eqtr3d 2822 . . . 4 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
278 elmapi 8162 . . . . . . . . . . . 12 ((1st ‘(1st𝑇)) ∈ ((0..^𝐾) ↑𝑚 (1...𝑁)) → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
279227, 278syl 17 . . . . . . . . . . 11 (𝜑 → (1st ‘(1st𝑇)):(1...𝑁)⟶(0..^𝐾))
280279ffvelrnda 6623 . . . . . . . . . 10 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ (0..^𝐾))
281 elfzonn0 12832 . . . . . . . . . 10 (((1st ‘(1st𝑇))‘𝑦) ∈ (0..^𝐾) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℕ0)
282280, 281syl 17 . . . . . . . . 9 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℕ0)
283282nn0red 11703 . . . . . . . 8 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) ∈ ℝ)
284283ltp1d 11308 . . . . . . . 8 ((𝜑𝑦 ∈ (1...𝑁)) → ((1st ‘(1st𝑇))‘𝑦) < (((1st ‘(1st𝑇))‘𝑦) + 1))
285283, 284gtned 10511 . . . . . . 7 ((𝜑𝑦 ∈ (1...𝑁)) → (((1st ‘(1st𝑇))‘𝑦) + 1) ≠ ((1st ‘(1st𝑇))‘𝑦))
286225, 285syldan 585 . . . . . 6 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → (((1st ‘(1st𝑇))‘𝑦) + 1) ≠ ((1st ‘(1st𝑇))‘𝑦))
287286neneqd 2974 . . . . 5 ((𝜑𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀))) → ¬ (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
288287adantrr 707 . . . 4 ((𝜑 ∧ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀)))) → ¬ (((1st ‘(1st𝑇))‘𝑦) + 1) = ((1st ‘(1st𝑇))‘𝑦))
289277, 288pm2.65da 807 . . 3 (𝜑 → ¬ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
290 iman 392 . . 3 ((𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))) ↔ ¬ (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) ∧ ¬ 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
291289, 290sylibr 226 . 2 (𝜑 → (𝑦 ∈ ((2nd ‘(1st𝑇)) “ (1...𝑀)) → 𝑦 ∈ ((2nd ‘(1st𝑈)) “ (1...𝑀))))
292291ssrdv 3827 1 (𝜑 → ((2nd ‘(1st𝑇)) “ (1...𝑀)) ⊆ ((2nd ‘(1st𝑈)) “ (1...𝑀)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107  {cab 2763   ≠ wne 2969  {crab 3094  Vcvv 3398  ⦋csb 3751   ∖ cdif 3789   ∪ cun 3790   ∩ cin 3791   ⊆ wss 3792  ∅c0 4141  ifcif 4307  {csn 4398   class class class wbr 4886   ↦ cmpt 4965   × cxp 5353  ◡ccnv 5354  ran crn 5356   “ cima 5358  Fun wfun 6129   Fn wfn 6130  ⟶wf 6131  –onto→wfo 6133  –1-1-onto→wf1o 6134  ‘cfv 6135  (class class class)co 6922   ∘𝑓 cof 7172  1st c1st 7443  2nd c2nd 7444   ↑𝑚 cmap 8140  ℂcc 10270  0cc0 10272  1c1 10273   + caddc 10275   < clt 10411   ≤ cle 10412   − cmin 10606  ℕcn 11374  ℕ0cn0 11642  ℤcz 11728  ...cfz 12643  ..^cfzo 12784 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-n0 11643  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785 This theorem is referenced by:  poimirlem13  34048
 Copyright terms: Public domain W3C validator