![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > swrdrndisj | Structured version Visualization version GIF version |
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
swrdf1.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
swrdf1.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
swrdf1.n | ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) |
swrdf1.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
swrdrndisj.1 | ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) |
swrdrndisj.2 | ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) |
Ref | Expression |
---|---|
swrdrndisj | ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdf1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
2 | swrdf1.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
3 | swrdf1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) | |
4 | swrdrn3 32922 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) |
6 | elfzuz 13580 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘0)) | |
7 | fzss1 13623 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...𝑃) ⊆ (0...𝑃)) | |
8 | 3, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃)) |
9 | swrdrndisj.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) | |
10 | 8, 9 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (0...𝑃)) |
11 | fzss1 13623 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) | |
12 | 3, 6, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) |
13 | swrdrndisj.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) | |
14 | 12, 13 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘𝑊))) |
15 | swrdrn3 32922 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) | |
16 | 1, 10, 14, 15 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) |
17 | 5, 16 | ineq12d 4242 | . 2 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
18 | swrdf1.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
19 | df-f1 6578 | . . . 4 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
20 | 19 | simprbi 496 | . . 3 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → Fun ◡𝑊) |
21 | imain 6663 | . . 3 ⊢ (Fun ◡𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) | |
22 | 18, 20, 21 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
23 | elfzuz 13580 | . . . . . . . . 9 ⊢ (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ≥‘𝑁)) | |
24 | fzoss1 13743 | . . . . . . . . 9 ⊢ (𝑂 ∈ (ℤ≥‘𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) | |
25 | 9, 23, 24 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) |
26 | elfzuz3 13581 | . . . . . . . . 9 ⊢ (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝑃)) | |
27 | fzoss2 13744 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) | |
28 | 13, 26, 27 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
29 | 25, 28 | sstrd 4019 | . . . . . . 7 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
30 | sslin 4264 | . . . . . . 7 ⊢ ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) | |
31 | 29, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) |
32 | fzodisj 13750 | . . . . . 6 ⊢ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅ | |
33 | 31, 32 | sseqtrdi 4059 | . . . . 5 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅) |
34 | ss0 4425 | . . . . 5 ⊢ (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) | |
35 | 33, 34 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) |
36 | 35 | imaeq2d 6089 | . . 3 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅)) |
37 | ima0 6106 | . . 3 ⊢ (𝑊 “ ∅) = ∅ | |
38 | 36, 37 | eqtrdi 2796 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅) |
39 | 17, 22, 38 | 3eqtr2d 2786 | 1 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 〈cop 4654 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℤ≥cuz 12903 ...cfz 13567 ..^cfzo 13711 ♯chash 14379 Word cword 14562 substr csubstr 14688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-substr 14689 |
This theorem is referenced by: cycpmco2f1 33117 |
Copyright terms: Public domain | W3C validator |