Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrndisj Structured version   Visualization version   GIF version

Theorem swrdrndisj 32886
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
swrdrndisj.1 (𝜑𝑂 ∈ (𝑁...𝑃))
swrdrndisj.2 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
Assertion
Ref Expression
swrdrndisj (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)

Proof of Theorem swrdrndisj
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdrn3 32884 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
6 elfzuz 13488 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘0))
7 fzss1 13531 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑃) ⊆ (0...𝑃))
83, 6, 73syl 18 . . . . 5 (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃))
9 swrdrndisj.1 . . . . 5 (𝜑𝑂 ∈ (𝑁...𝑃))
108, 9sseldd 3950 . . . 4 (𝜑𝑂 ∈ (0...𝑃))
11 fzss1 13531 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
123, 6, 113syl 18 . . . . 5 (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
13 swrdrndisj.2 . . . . 5 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
1412, 13sseldd 3950 . . . 4 (𝜑𝑃 ∈ (0...(♯‘𝑊)))
15 swrdrn3 32884 . . . 4 ((𝑊 ∈ Word 𝐷𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
161, 10, 14, 15syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
175, 16ineq12d 4187 . 2 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
18 swrdf1.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
19 df-f1 6519 . . . 4 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
2019simprbi 496 . . 3 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
21 imain 6604 . . 3 (Fun 𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
2218, 20, 213syl 18 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
23 elfzuz 13488 . . . . . . . . 9 (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ𝑁))
24 fzoss1 13654 . . . . . . . . 9 (𝑂 ∈ (ℤ𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
259, 23, 243syl 18 . . . . . . . 8 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
26 elfzuz3 13489 . . . . . . . . 9 (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑃))
27 fzoss2 13655 . . . . . . . . 9 ((♯‘𝑊) ∈ (ℤ𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2813, 26, 273syl 18 . . . . . . . 8 (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2925, 28sstrd 3960 . . . . . . 7 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
30 sslin 4209 . . . . . . 7 ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
3129, 30syl 17 . . . . . 6 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
32 fzodisj 13661 . . . . . 6 ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅
3331, 32sseqtrdi 3990 . . . . 5 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅)
34 ss0 4368 . . . . 5 (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3533, 34syl 17 . . . 4 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3635imaeq2d 6034 . . 3 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅))
37 ima0 6051 . . 3 (𝑊 “ ∅) = ∅
3836, 37eqtrdi 2781 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅)
3917, 22, 383eqtr2d 2771 1 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3916  wss 3917  c0 4299  cop 4598  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  0cc0 11075  cuz 12800  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485   substr csubstr 14612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-substr 14613
This theorem is referenced by:  cycpmco2f1  33088
  Copyright terms: Public domain W3C validator