Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrndisj Structured version   Visualization version   GIF version

Theorem swrdrndisj 32945
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
swrdrndisj.1 (𝜑𝑂 ∈ (𝑁...𝑃))
swrdrndisj.2 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
Assertion
Ref Expression
swrdrndisj (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)

Proof of Theorem swrdrndisj
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdrn3 32943 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
6 elfzuz 13422 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘0))
7 fzss1 13465 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑃) ⊆ (0...𝑃))
83, 6, 73syl 18 . . . . 5 (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃))
9 swrdrndisj.1 . . . . 5 (𝜑𝑂 ∈ (𝑁...𝑃))
108, 9sseldd 3931 . . . 4 (𝜑𝑂 ∈ (0...𝑃))
11 fzss1 13465 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
123, 6, 113syl 18 . . . . 5 (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
13 swrdrndisj.2 . . . . 5 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
1412, 13sseldd 3931 . . . 4 (𝜑𝑃 ∈ (0...(♯‘𝑊)))
15 swrdrn3 32943 . . . 4 ((𝑊 ∈ Word 𝐷𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
161, 10, 14, 15syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
175, 16ineq12d 4170 . 2 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
18 swrdf1.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
19 df-f1 6491 . . . 4 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
2019simprbi 496 . . 3 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
21 imain 6571 . . 3 (Fun 𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
2218, 20, 213syl 18 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
23 elfzuz 13422 . . . . . . . . 9 (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ𝑁))
24 fzoss1 13588 . . . . . . . . 9 (𝑂 ∈ (ℤ𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
259, 23, 243syl 18 . . . . . . . 8 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
26 elfzuz3 13423 . . . . . . . . 9 (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑃))
27 fzoss2 13589 . . . . . . . . 9 ((♯‘𝑊) ∈ (ℤ𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2813, 26, 273syl 18 . . . . . . . 8 (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2925, 28sstrd 3941 . . . . . . 7 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
30 sslin 4192 . . . . . . 7 ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
3129, 30syl 17 . . . . . 6 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
32 fzodisj 13595 . . . . . 6 ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅
3331, 32sseqtrdi 3971 . . . . 5 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅)
34 ss0 4351 . . . . 5 (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3533, 34syl 17 . . . 4 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3635imaeq2d 6013 . . 3 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅))
37 ima0 6030 . . 3 (𝑊 “ ∅) = ∅
3836, 37eqtrdi 2784 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅)
3917, 22, 383eqtr2d 2774 1 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cin 3897  wss 3898  c0 4282  cop 4581  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6480  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  0cc0 11013  cuz 12738  ...cfz 13409  ..^cfzo 13556  chash 14239  Word cword 14422   substr csubstr 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-substr 14551
This theorem is referenced by:  cycpmco2f1  33100
  Copyright terms: Public domain W3C validator