Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrndisj Structured version   Visualization version   GIF version

Theorem swrdrndisj 32879
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
swrdrndisj.1 (𝜑𝑂 ∈ (𝑁...𝑃))
swrdrndisj.2 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
Assertion
Ref Expression
swrdrndisj (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)

Proof of Theorem swrdrndisj
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdrn3 32877 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
6 elfzuz 13481 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘0))
7 fzss1 13524 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑃) ⊆ (0...𝑃))
83, 6, 73syl 18 . . . . 5 (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃))
9 swrdrndisj.1 . . . . 5 (𝜑𝑂 ∈ (𝑁...𝑃))
108, 9sseldd 3947 . . . 4 (𝜑𝑂 ∈ (0...𝑃))
11 fzss1 13524 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
123, 6, 113syl 18 . . . . 5 (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
13 swrdrndisj.2 . . . . 5 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
1412, 13sseldd 3947 . . . 4 (𝜑𝑃 ∈ (0...(♯‘𝑊)))
15 swrdrn3 32877 . . . 4 ((𝑊 ∈ Word 𝐷𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
161, 10, 14, 15syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
175, 16ineq12d 4184 . 2 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
18 swrdf1.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
19 df-f1 6516 . . . 4 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
2019simprbi 496 . . 3 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
21 imain 6601 . . 3 (Fun 𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
2218, 20, 213syl 18 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
23 elfzuz 13481 . . . . . . . . 9 (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ𝑁))
24 fzoss1 13647 . . . . . . . . 9 (𝑂 ∈ (ℤ𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
259, 23, 243syl 18 . . . . . . . 8 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
26 elfzuz3 13482 . . . . . . . . 9 (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑃))
27 fzoss2 13648 . . . . . . . . 9 ((♯‘𝑊) ∈ (ℤ𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2813, 26, 273syl 18 . . . . . . . 8 (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2925, 28sstrd 3957 . . . . . . 7 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
30 sslin 4206 . . . . . . 7 ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
3129, 30syl 17 . . . . . 6 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
32 fzodisj 13654 . . . . . 6 ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅
3331, 32sseqtrdi 3987 . . . . 5 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅)
34 ss0 4365 . . . . 5 (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3533, 34syl 17 . . . 4 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3635imaeq2d 6031 . . 3 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅))
37 ima0 6048 . . 3 (𝑊 “ ∅) = ∅
3836, 37eqtrdi 2780 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅)
3917, 22, 383eqtr2d 2770 1 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cin 3913  wss 3914  c0 4296  cop 4595  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  0cc0 11068  cuz 12793  ...cfz 13468  ..^cfzo 13615  chash 14295  Word cword 14478   substr csubstr 14605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606
This theorem is referenced by:  cycpmco2f1  33081
  Copyright terms: Public domain W3C validator