![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > swrdrndisj | Structured version Visualization version GIF version |
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
Ref | Expression |
---|---|
swrdf1.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
swrdf1.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
swrdf1.n | ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) |
swrdf1.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
swrdrndisj.1 | ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) |
swrdrndisj.2 | ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) |
Ref | Expression |
---|---|
swrdrndisj | ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdf1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
2 | swrdf1.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
3 | swrdf1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) | |
4 | swrdrn3 32925 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) |
6 | elfzuz 13557 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘0)) | |
7 | fzss1 13600 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...𝑃) ⊆ (0...𝑃)) | |
8 | 3, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃)) |
9 | swrdrndisj.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) | |
10 | 8, 9 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (0...𝑃)) |
11 | fzss1 13600 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) | |
12 | 3, 6, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) |
13 | swrdrndisj.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) | |
14 | 12, 13 | sseldd 3996 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘𝑊))) |
15 | swrdrn3 32925 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) | |
16 | 1, 10, 14, 15 | syl3anc 1370 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) |
17 | 5, 16 | ineq12d 4229 | . 2 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
18 | swrdf1.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
19 | df-f1 6568 | . . . 4 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
20 | 19 | simprbi 496 | . . 3 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → Fun ◡𝑊) |
21 | imain 6653 | . . 3 ⊢ (Fun ◡𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) | |
22 | 18, 20, 21 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
23 | elfzuz 13557 | . . . . . . . . 9 ⊢ (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ≥‘𝑁)) | |
24 | fzoss1 13723 | . . . . . . . . 9 ⊢ (𝑂 ∈ (ℤ≥‘𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) | |
25 | 9, 23, 24 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) |
26 | elfzuz3 13558 | . . . . . . . . 9 ⊢ (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝑃)) | |
27 | fzoss2 13724 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) | |
28 | 13, 26, 27 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
29 | 25, 28 | sstrd 4006 | . . . . . . 7 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
30 | sslin 4251 | . . . . . . 7 ⊢ ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) | |
31 | 29, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) |
32 | fzodisj 13730 | . . . . . 6 ⊢ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅ | |
33 | 31, 32 | sseqtrdi 4046 | . . . . 5 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅) |
34 | ss0 4408 | . . . . 5 ⊢ (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) | |
35 | 33, 34 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) |
36 | 35 | imaeq2d 6080 | . . 3 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅)) |
37 | ima0 6097 | . . 3 ⊢ (𝑊 “ ∅) = ∅ | |
38 | 36, 37 | eqtrdi 2791 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅) |
39 | 17, 22, 38 | 3eqtr2d 2781 | 1 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 〈cop 4637 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 Fun wfun 6557 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 (class class class)co 7431 0cc0 11153 ℤ≥cuz 12876 ...cfz 13544 ..^cfzo 13691 ♯chash 14366 Word cword 14549 substr csubstr 14675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-substr 14676 |
This theorem is referenced by: cycpmco2f1 33127 |
Copyright terms: Public domain | W3C validator |