| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > swrdrndisj | Structured version Visualization version GIF version | ||
| Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| Ref | Expression |
|---|---|
| swrdf1.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| swrdf1.m | ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) |
| swrdf1.n | ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) |
| swrdf1.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| swrdrndisj.1 | ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) |
| swrdrndisj.2 | ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) |
| Ref | Expression |
|---|---|
| swrdrndisj | ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swrdf1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 2 | swrdf1.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) | |
| 3 | swrdf1.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) | |
| 4 | swrdrn3 32943 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) |
| 6 | elfzuz 13422 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ≥‘0)) | |
| 7 | fzss1 13465 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...𝑃) ⊆ (0...𝑃)) | |
| 8 | 3, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃)) |
| 9 | swrdrndisj.1 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) | |
| 10 | 8, 9 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (0...𝑃)) |
| 11 | fzss1 13465 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) | |
| 12 | 3, 6, 11 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊))) |
| 13 | swrdrndisj.2 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) | |
| 14 | 12, 13 | sseldd 3931 | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (0...(♯‘𝑊))) |
| 15 | swrdrn3 32943 | . . . 4 ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) | |
| 16 | 1, 10, 14, 15 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ran (𝑊 substr 〈𝑂, 𝑃〉) = (𝑊 “ (𝑂..^𝑃))) |
| 17 | 5, 16 | ineq12d 4170 | . 2 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
| 18 | swrdf1.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 19 | df-f1 6491 | . . . 4 ⊢ (𝑊:dom 𝑊–1-1→𝐷 ↔ (𝑊:dom 𝑊⟶𝐷 ∧ Fun ◡𝑊)) | |
| 20 | 19 | simprbi 496 | . . 3 ⊢ (𝑊:dom 𝑊–1-1→𝐷 → Fun ◡𝑊) |
| 21 | imain 6571 | . . 3 ⊢ (Fun ◡𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) | |
| 22 | 18, 20, 21 | 3syl 18 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃)))) |
| 23 | elfzuz 13422 | . . . . . . . . 9 ⊢ (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ≥‘𝑁)) | |
| 24 | fzoss1 13588 | . . . . . . . . 9 ⊢ (𝑂 ∈ (ℤ≥‘𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) | |
| 25 | 9, 23, 24 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃)) |
| 26 | elfzuz3 13423 | . . . . . . . . 9 ⊢ (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ≥‘𝑃)) | |
| 27 | fzoss2 13589 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ (ℤ≥‘𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) | |
| 28 | 13, 26, 27 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
| 29 | 25, 28 | sstrd 3941 | . . . . . . 7 ⊢ (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊))) |
| 30 | sslin 4192 | . . . . . . 7 ⊢ ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) | |
| 31 | 29, 30 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊)))) |
| 32 | fzodisj 13595 | . . . . . 6 ⊢ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅ | |
| 33 | 31, 32 | sseqtrdi 3971 | . . . . 5 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅) |
| 34 | ss0 4351 | . . . . 5 ⊢ (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) | |
| 35 | 33, 34 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅) |
| 36 | 35 | imaeq2d 6013 | . . 3 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅)) |
| 37 | ima0 6030 | . . 3 ⊢ (𝑊 “ ∅) = ∅ | |
| 38 | 36, 37 | eqtrdi 2784 | . 2 ⊢ (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅) |
| 39 | 17, 22, 38 | 3eqtr2d 2774 | 1 ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 〈cop 4581 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 Fun wfun 6480 ⟶wf 6482 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7352 0cc0 11013 ℤ≥cuz 12738 ...cfz 13409 ..^cfzo 13556 ♯chash 14239 Word cword 14422 substr csubstr 14550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-substr 14551 |
| This theorem is referenced by: cycpmco2f1 33100 |
| Copyright terms: Public domain | W3C validator |