Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrndisj Structured version   Visualization version   GIF version

Theorem swrdrndisj 32936
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
swrdrndisj.1 (𝜑𝑂 ∈ (𝑁...𝑃))
swrdrndisj.2 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
Assertion
Ref Expression
swrdrndisj (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)

Proof of Theorem swrdrndisj
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdrn3 32934 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
51, 2, 3, 4syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
6 elfzuz 13420 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘0))
7 fzss1 13463 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑃) ⊆ (0...𝑃))
83, 6, 73syl 18 . . . . 5 (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃))
9 swrdrndisj.1 . . . . 5 (𝜑𝑂 ∈ (𝑁...𝑃))
108, 9sseldd 3935 . . . 4 (𝜑𝑂 ∈ (0...𝑃))
11 fzss1 13463 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
123, 6, 113syl 18 . . . . 5 (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
13 swrdrndisj.2 . . . . 5 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
1412, 13sseldd 3935 . . . 4 (𝜑𝑃 ∈ (0...(♯‘𝑊)))
15 swrdrn3 32934 . . . 4 ((𝑊 ∈ Word 𝐷𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
161, 10, 14, 15syl3anc 1373 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
175, 16ineq12d 4171 . 2 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
18 swrdf1.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
19 df-f1 6486 . . . 4 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
2019simprbi 496 . . 3 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
21 imain 6566 . . 3 (Fun 𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
2218, 20, 213syl 18 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
23 elfzuz 13420 . . . . . . . . 9 (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ𝑁))
24 fzoss1 13586 . . . . . . . . 9 (𝑂 ∈ (ℤ𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
259, 23, 243syl 18 . . . . . . . 8 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
26 elfzuz3 13421 . . . . . . . . 9 (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑃))
27 fzoss2 13587 . . . . . . . . 9 ((♯‘𝑊) ∈ (ℤ𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2813, 26, 273syl 18 . . . . . . . 8 (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2925, 28sstrd 3945 . . . . . . 7 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
30 sslin 4193 . . . . . . 7 ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
3129, 30syl 17 . . . . . 6 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
32 fzodisj 13593 . . . . . 6 ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅
3331, 32sseqtrdi 3975 . . . . 5 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅)
34 ss0 4352 . . . . 5 (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3533, 34syl 17 . . . 4 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3635imaeq2d 6009 . . 3 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅))
37 ima0 6026 . . 3 (𝑊 “ ∅) = ∅
3836, 37eqtrdi 2782 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅)
3917, 22, 383eqtr2d 2772 1 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3901  wss 3902  c0 4283  cop 4582  ccnv 5615  dom cdm 5616  ran crn 5617  cima 5619  Fun wfun 6475  wf 6477  1-1wf1 6478  cfv 6481  (class class class)co 7346  0cc0 11006  cuz 12732  ...cfz 13407  ..^cfzo 13554  chash 14237  Word cword 14420   substr csubstr 14548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-substr 14549
This theorem is referenced by:  cycpmco2f1  33091
  Copyright terms: Public domain W3C validator