Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrndisj Structured version   Visualization version   GIF version

Theorem swrdrndisj 30631
Description: Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.)
Hypotheses
Ref Expression
swrdf1.w (𝜑𝑊 ∈ Word 𝐷)
swrdf1.m (𝜑𝑀 ∈ (0...𝑁))
swrdf1.n (𝜑𝑁 ∈ (0...(♯‘𝑊)))
swrdf1.1 (𝜑𝑊:dom 𝑊1-1𝐷)
swrdrndisj.1 (𝜑𝑂 ∈ (𝑁...𝑃))
swrdrndisj.2 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
Assertion
Ref Expression
swrdrndisj (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)

Proof of Theorem swrdrndisj
StepHypRef Expression
1 swrdf1.w . . . 4 (𝜑𝑊 ∈ Word 𝐷)
2 swrdf1.m . . . 4 (𝜑𝑀 ∈ (0...𝑁))
3 swrdf1.n . . . 4 (𝜑𝑁 ∈ (0...(♯‘𝑊)))
4 swrdrn3 30629 . . . 4 ((𝑊 ∈ Word 𝐷𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
51, 2, 3, 4syl3anc 1367 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑀, 𝑁⟩) = (𝑊 “ (𝑀..^𝑁)))
6 elfzuz 12905 . . . . . 6 (𝑁 ∈ (0...(♯‘𝑊)) → 𝑁 ∈ (ℤ‘0))
7 fzss1 12947 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...𝑃) ⊆ (0...𝑃))
83, 6, 73syl 18 . . . . 5 (𝜑 → (𝑁...𝑃) ⊆ (0...𝑃))
9 swrdrndisj.1 . . . . 5 (𝜑𝑂 ∈ (𝑁...𝑃))
108, 9sseldd 3968 . . . 4 (𝜑𝑂 ∈ (0...𝑃))
11 fzss1 12947 . . . . . 6 (𝑁 ∈ (ℤ‘0) → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
123, 6, 113syl 18 . . . . 5 (𝜑 → (𝑁...(♯‘𝑊)) ⊆ (0...(♯‘𝑊)))
13 swrdrndisj.2 . . . . 5 (𝜑𝑃 ∈ (𝑁...(♯‘𝑊)))
1412, 13sseldd 3968 . . . 4 (𝜑𝑃 ∈ (0...(♯‘𝑊)))
15 swrdrn3 30629 . . . 4 ((𝑊 ∈ Word 𝐷𝑂 ∈ (0...𝑃) ∧ 𝑃 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
161, 10, 14, 15syl3anc 1367 . . 3 (𝜑 → ran (𝑊 substr ⟨𝑂, 𝑃⟩) = (𝑊 “ (𝑂..^𝑃)))
175, 16ineq12d 4190 . 2 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
18 swrdf1.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
19 df-f1 6360 . . . 4 (𝑊:dom 𝑊1-1𝐷 ↔ (𝑊:dom 𝑊𝐷 ∧ Fun 𝑊))
2019simprbi 499 . . 3 (𝑊:dom 𝑊1-1𝐷 → Fun 𝑊)
21 imain 6439 . . 3 (Fun 𝑊 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
2218, 20, 213syl 18 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ((𝑊 “ (𝑀..^𝑁)) ∩ (𝑊 “ (𝑂..^𝑃))))
23 elfzuz 12905 . . . . . . . . 9 (𝑂 ∈ (𝑁...𝑃) → 𝑂 ∈ (ℤ𝑁))
24 fzoss1 13065 . . . . . . . . 9 (𝑂 ∈ (ℤ𝑁) → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
259, 23, 243syl 18 . . . . . . . 8 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^𝑃))
26 elfzuz3 12906 . . . . . . . . 9 (𝑃 ∈ (𝑁...(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑃))
27 fzoss2 13066 . . . . . . . . 9 ((♯‘𝑊) ∈ (ℤ𝑃) → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2813, 26, 273syl 18 . . . . . . . 8 (𝜑 → (𝑁..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
2925, 28sstrd 3977 . . . . . . 7 (𝜑 → (𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)))
30 sslin 4211 . . . . . . 7 ((𝑂..^𝑃) ⊆ (𝑁..^(♯‘𝑊)) → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
3129, 30syl 17 . . . . . 6 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))))
32 fzodisj 13072 . . . . . 6 ((𝑀..^𝑁) ∩ (𝑁..^(♯‘𝑊))) = ∅
3331, 32sseqtrdi 4017 . . . . 5 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅)
34 ss0 4352 . . . . 5 (((𝑀..^𝑁) ∩ (𝑂..^𝑃)) ⊆ ∅ → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3533, 34syl 17 . . . 4 (𝜑 → ((𝑀..^𝑁) ∩ (𝑂..^𝑃)) = ∅)
3635imaeq2d 5929 . . 3 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = (𝑊 “ ∅))
37 ima0 5945 . . 3 (𝑊 “ ∅) = ∅
3836, 37syl6eq 2872 . 2 (𝜑 → (𝑊 “ ((𝑀..^𝑁) ∩ (𝑂..^𝑃))) = ∅)
3917, 22, 383eqtr2d 2862 1 (𝜑 → (ran (𝑊 substr ⟨𝑀, 𝑁⟩) ∩ ran (𝑊 substr ⟨𝑂, 𝑃⟩)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cin 3935  wss 3936  c0 4291  cop 4573  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558  Fun wfun 6349  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  0cc0 10537  cuz 12244  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862   substr csubstr 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-substr 14003
This theorem is referenced by:  cycpmco2f1  30766
  Copyright terms: Public domain W3C validator