MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopi Structured version   Visualization version   GIF version

Theorem topontopi 22861
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
topontopi 𝐽 ∈ Top

Proof of Theorem topontopi
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOn‘𝐵)
2 topontop 22859 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
31, 2ax-mp 5 1 𝐽 ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cfv 6549  Topctop 22839  TopOnctopon 22856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6501  df-fun 6551  df-fv 6557  df-topon 22857
This theorem is referenced by:  sn0top  22946  indistop  22949  letop  23154  dfac14  23566  cnfldtop  24744  sszcld  24777  iitop  24844  limccnp2  25865  cxpcn3  26728  lmlim  33676  pnfneige0  33680  sxbrsigalem4  34035  poimir  37254  islptre  45142  fourierdlem62  45691
  Copyright terms: Public domain W3C validator