MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopi Structured version   Visualization version   GIF version

Theorem topontopi 22937
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
topontopi 𝐽 ∈ Top

Proof of Theorem topontopi
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOn‘𝐵)
2 topontop 22935 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
31, 2ax-mp 5 1 𝐽 ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cfv 6563  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-topon 22933
This theorem is referenced by:  sn0top  23022  indistop  23025  letop  23230  dfac14  23642  cnfldtop  24820  sszcld  24853  iitop  24920  limccnp2  25942  cxpcn3  26806  lmlim  33908  pnfneige0  33912  sxbrsigalem4  34269  poimir  37640  islptre  45575  fourierdlem62  46124
  Copyright terms: Public domain W3C validator