MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topontopi Structured version   Visualization version   GIF version

Theorem topontopi 22835
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
topontopi.1 𝐽 ∈ (TopOn‘𝐵)
Assertion
Ref Expression
topontopi 𝐽 ∈ Top

Proof of Theorem topontopi
StepHypRef Expression
1 topontopi.1 . 2 𝐽 ∈ (TopOn‘𝐵)
2 topontop 22833 . 2 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
31, 2ax-mp 5 1 𝐽 ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cfv 6499  Topctop 22813  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topon 22831
This theorem is referenced by:  sn0top  22919  indistop  22922  letop  23126  dfac14  23538  cnfldtop  24704  sszcld  24739  iitop  24806  limccnp2  25826  cxpcn3  26691  lmlim  33930  pnfneige0  33934  sxbrsigalem4  34271  poimir  37640  islptre  45610  fourierdlem62  46159
  Copyright terms: Public domain W3C validator