Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontopi | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
topontopi | ⊢ 𝐽 ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | topontop 22050 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐽 ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ‘cfv 6427 Topctop 22030 TopOnctopon 22047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-iota 6385 df-fun 6429 df-fv 6435 df-topon 22048 |
This theorem is referenced by: sn0top 22137 indistop 22140 letop 22345 dfac14 22757 cnfldtop 23935 sszcld 23968 iitop 24031 limccnp2 25044 cxpcn3 25889 lmlim 31883 pnfneige0 31887 sxbrsigalem4 32240 knoppcnlem10 34668 poimir 35796 islptre 43119 fourierdlem62 43668 |
Copyright terms: Public domain | W3C validator |