Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > topontopi | Structured version Visualization version GIF version |
Description: A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
topontopi.1 | ⊢ 𝐽 ∈ (TopOn‘𝐵) |
Ref | Expression |
---|---|
topontopi | ⊢ 𝐽 ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontopi.1 | . 2 ⊢ 𝐽 ∈ (TopOn‘𝐵) | |
2 | topontop 22062 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐽 ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ‘cfv 6433 Topctop 22042 TopOnctopon 22059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topon 22060 |
This theorem is referenced by: sn0top 22149 indistop 22152 letop 22357 dfac14 22769 cnfldtop 23947 sszcld 23980 iitop 24043 limccnp2 25056 cxpcn3 25901 lmlim 31897 pnfneige0 31901 sxbrsigalem4 32254 knoppcnlem10 34682 poimir 35810 islptre 43160 fourierdlem62 43709 |
Copyright terms: Public domain | W3C validator |