Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddov4 Structured version   Visualization version   GIF version

Theorem naddov4 43373
Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.)
Assertion
Ref Expression
naddov4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐴,𝑏,𝑥   𝐵,𝑎,𝑥   𝐵,𝑏

Proof of Theorem naddov4
StepHypRef Expression
1 naddov2 8588 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)})
2 inrab 4263 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)}
3 incom 4156 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
42, 3eqtr3i 2754 . . 3 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
54inteqi 4898 . 2 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
61, 5eqtrdi 2780 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3392  cin 3898   cint 4894  Oncon0 6301  (class class class)co 7340   +no cnadd 8574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4895  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-se 5567  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7343  df-oprab 7344  df-mpo 7345  df-1st 7915  df-2nd 7916  df-frecs 8205  df-nadd 8575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator