![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddov4 | Structured version Visualization version GIF version |
Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.) |
Ref | Expression |
---|---|
naddov4 | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddov2 8680 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥)}) | |
2 | inrab 4306 | . . . 4 ⊢ ({𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = {𝑥 ∈ On ∣ (∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} | |
3 | incom 4201 | . . . 4 ⊢ ({𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥}) | |
4 | 2, 3 | eqtr3i 2762 | . . 3 ⊢ {𝑥 ∈ On ∣ (∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥}) |
5 | 4 | inteqi 4954 | . 2 ⊢ ∩ {𝑥 ∈ On ∣ (∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ∩ ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥}) |
6 | 1, 5 | eqtrdi 2788 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 ∩ cin 3947 ∩ cint 4950 Oncon0 6364 (class class class)co 7411 +no cnadd 8666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-frecs 8268 df-nadd 8667 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |