Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddov4 Structured version   Visualization version   GIF version

Theorem naddov4 43347
Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.)
Assertion
Ref Expression
naddov4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐴,𝑏,𝑥   𝐵,𝑎,𝑥   𝐵,𝑏

Proof of Theorem naddov4
StepHypRef Expression
1 naddov2 8737 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)})
2 inrab 4335 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)}
3 incom 4230 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
42, 3eqtr3i 2770 . . 3 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
54inteqi 4974 . 2 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
61, 5eqtrdi 2796 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cin 3975   cint 4970  Oncon0 6397  (class class class)co 7450   +no cnadd 8723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-frecs 8324  df-nadd 8724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator