Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddov4 Structured version   Visualization version   GIF version

Theorem naddov4 43341
Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.)
Assertion
Ref Expression
naddov4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐴,𝑏,𝑥   𝐵,𝑎,𝑥   𝐵,𝑏

Proof of Theorem naddov4
StepHypRef Expression
1 naddov2 8700 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)})
2 inrab 4298 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)}
3 incom 4191 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
42, 3eqtr3i 2759 . . 3 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
54inteqi 4932 . 2 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
61, 5eqtrdi 2785 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3050  {crab 3420  cin 3932   cint 4928  Oncon0 6365  (class class class)co 7414   +no cnadd 8686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-se 5620  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-frecs 8289  df-nadd 8687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator