Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddov4 Structured version   Visualization version   GIF version

Theorem naddov4 43344
Description: Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.)
Assertion
Ref Expression
naddov4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Distinct variable groups:   𝐴,𝑎,𝑥   𝐴,𝑏,𝑥   𝐵,𝑎,𝑥   𝐵,𝑏

Proof of Theorem naddov4
StepHypRef Expression
1 naddov2 8654 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)})
2 inrab 4287 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)}
3 incom 4180 . . . 4 ({𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥}) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
42, 3eqtr3i 2755 . . 3 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
54inteqi 4922 . 2 {𝑥 ∈ On ∣ (∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥 ∧ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥)} = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥})
61, 5eqtrdi 2781 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ({𝑥 ∈ On ∣ ∀𝑎𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏𝐵 (𝐴 +no 𝑏) ∈ 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3046  {crab 3411  cin 3921   cint 4918  Oncon0 6340  (class class class)co 7394   +no cnadd 8640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-frecs 8269  df-nadd 8641
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator