Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-ineqtransd | Structured version Visualization version GIF version |
Description: InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-ineqtransd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-ineqtransd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-ineqtransd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-ineqtransd.4 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
int-ineqtransd.5 | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
int-ineqtransd | ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-ineqtransd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
2 | int-ineqtransd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | int-ineqtransd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | int-ineqtransd.5 | . 2 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
5 | int-ineqtransd.4 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
6 | 1, 2, 3, 4, 5 | letrd 11062 | 1 ⊢ (𝜑 → 𝐶 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |