Users' Mathboxes Mathbox for Stanislas Polu < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitadd Structured version   Visualization version   GIF version

Theorem unitadd 44186
Description: Theorem used in conjunction with decaddc 12768 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.)
Hypotheses
Ref Expression
unitadd.1 (𝐴 + 𝐵) = 𝐹
unitadd.2 (𝐶 + 1) = 𝐵
unitadd.3 𝐴 ∈ ℕ0
unitadd.4 𝐶 ∈ ℕ0
Assertion
Ref Expression
unitadd ((𝐴 + 𝐶) + 1) = 𝐹

Proof of Theorem unitadd
StepHypRef Expression
1 unitadd.3 . . . 4 𝐴 ∈ ℕ0
21nn0cni 12518 . . 3 𝐴 ∈ ℂ
3 unitadd.4 . . . 4 𝐶 ∈ ℕ0
43nn0cni 12518 . . 3 𝐶 ∈ ℂ
5 ax-1cn 11192 . . 3 1 ∈ ℂ
62, 4, 5addassi 11250 . 2 ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1))
7 unitadd.2 . . . . 5 (𝐶 + 1) = 𝐵
87eqcomi 2745 . . . 4 𝐵 = (𝐶 + 1)
98oveq2i 7421 . . 3 (𝐴 + 𝐵) = (𝐴 + (𝐶 + 1))
10 unitadd.1 . . 3 (𝐴 + 𝐵) = 𝐹
119, 10eqtr3i 2761 . 2 (𝐴 + (𝐶 + 1)) = 𝐹
126, 11eqtri 2759 1 ((𝐴 + 𝐶) + 1) = 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7410  1c1 11135   + caddc 11137  0cn0 12506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-mulcl 11196  ax-addass 11199  ax-i2m1 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator