| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitadd | Structured version Visualization version GIF version | ||
| Description: Theorem used in conjunction with decaddc 12710 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| unitadd.1 | ⊢ (𝐴 + 𝐵) = 𝐹 |
| unitadd.2 | ⊢ (𝐶 + 1) = 𝐵 |
| unitadd.3 | ⊢ 𝐴 ∈ ℕ0 |
| unitadd.4 | ⊢ 𝐶 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| unitadd | ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitadd.3 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0cni 12460 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 3 | unitadd.4 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12460 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 5 | ax-1cn 11132 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | 2, 4, 5 | addassi 11190 | . 2 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
| 7 | unitadd.2 | . . . . 5 ⊢ (𝐶 + 1) = 𝐵 | |
| 8 | 7 | eqcomi 2739 | . . . 4 ⊢ 𝐵 = (𝐶 + 1) |
| 9 | 8 | oveq2i 7400 | . . 3 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐶 + 1)) |
| 10 | unitadd.1 | . . 3 ⊢ (𝐴 + 𝐵) = 𝐹 | |
| 11 | 9, 10 | eqtr3i 2755 | . 2 ⊢ (𝐴 + (𝐶 + 1)) = 𝐹 |
| 12 | 6, 11 | eqtri 2753 | 1 ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7389 1c1 11075 + caddc 11077 ℕ0cn0 12448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-mulcl 11136 ax-addass 11139 ax-i2m1 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-nn 12188 df-n0 12449 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |