| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitadd | Structured version Visualization version GIF version | ||
| Description: Theorem used in conjunction with decaddc 12768 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| unitadd.1 | ⊢ (𝐴 + 𝐵) = 𝐹 |
| unitadd.2 | ⊢ (𝐶 + 1) = 𝐵 |
| unitadd.3 | ⊢ 𝐴 ∈ ℕ0 |
| unitadd.4 | ⊢ 𝐶 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| unitadd | ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitadd.3 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0cni 12518 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 3 | unitadd.4 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12518 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 5 | ax-1cn 11192 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | 2, 4, 5 | addassi 11250 | . 2 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
| 7 | unitadd.2 | . . . . 5 ⊢ (𝐶 + 1) = 𝐵 | |
| 8 | 7 | eqcomi 2745 | . . . 4 ⊢ 𝐵 = (𝐶 + 1) |
| 9 | 8 | oveq2i 7421 | . . 3 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐶 + 1)) |
| 10 | unitadd.1 | . . 3 ⊢ (𝐴 + 𝐵) = 𝐹 | |
| 11 | 9, 10 | eqtr3i 2761 | . 2 ⊢ (𝐴 + (𝐶 + 1)) = 𝐹 |
| 12 | 6, 11 | eqtri 2759 | 1 ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7410 1c1 11135 + caddc 11137 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-mulcl 11196 ax-addass 11199 ax-i2m1 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |