Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unitadd | Structured version Visualization version GIF version |
Description: Theorem used in conjunction with decaddc 12502 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
unitadd.1 | ⊢ (𝐴 + 𝐵) = 𝐹 |
unitadd.2 | ⊢ (𝐶 + 1) = 𝐵 |
unitadd.3 | ⊢ 𝐴 ∈ ℕ0 |
unitadd.4 | ⊢ 𝐶 ∈ ℕ0 |
Ref | Expression |
---|---|
unitadd | ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitadd.3 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
2 | 1 | nn0cni 12255 | . . 3 ⊢ 𝐴 ∈ ℂ |
3 | unitadd.4 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
4 | 3 | nn0cni 12255 | . . 3 ⊢ 𝐶 ∈ ℂ |
5 | ax-1cn 10939 | . . 3 ⊢ 1 ∈ ℂ | |
6 | 2, 4, 5 | addassi 10995 | . 2 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
7 | unitadd.2 | . . . . 5 ⊢ (𝐶 + 1) = 𝐵 | |
8 | 7 | eqcomi 2747 | . . . 4 ⊢ 𝐵 = (𝐶 + 1) |
9 | 8 | oveq2i 7278 | . . 3 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐶 + 1)) |
10 | unitadd.1 | . . 3 ⊢ (𝐴 + 𝐵) = 𝐹 | |
11 | 9, 10 | eqtr3i 2768 | . 2 ⊢ (𝐴 + (𝐶 + 1)) = 𝐹 |
12 | 6, 11 | eqtri 2766 | 1 ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7267 1c1 10882 + caddc 10884 ℕ0cn0 12243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pr 5350 ax-un 7578 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-mulcl 10943 ax-addass 10946 ax-i2m1 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-nn 11984 df-n0 12244 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |