| Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitadd | Structured version Visualization version GIF version | ||
| Description: Theorem used in conjunction with decaddc 12704 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
| Ref | Expression |
|---|---|
| unitadd.1 | ⊢ (𝐴 + 𝐵) = 𝐹 |
| unitadd.2 | ⊢ (𝐶 + 1) = 𝐵 |
| unitadd.3 | ⊢ 𝐴 ∈ ℕ0 |
| unitadd.4 | ⊢ 𝐶 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| unitadd | ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitadd.3 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0cni 12454 | . . 3 ⊢ 𝐴 ∈ ℂ |
| 3 | unitadd.4 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12454 | . . 3 ⊢ 𝐶 ∈ ℂ |
| 5 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | 2, 4, 5 | addassi 11184 | . 2 ⊢ ((𝐴 + 𝐶) + 1) = (𝐴 + (𝐶 + 1)) |
| 7 | unitadd.2 | . . . . 5 ⊢ (𝐶 + 1) = 𝐵 | |
| 8 | 7 | eqcomi 2738 | . . . 4 ⊢ 𝐵 = (𝐶 + 1) |
| 9 | 8 | oveq2i 7398 | . . 3 ⊢ (𝐴 + 𝐵) = (𝐴 + (𝐶 + 1)) |
| 10 | unitadd.1 | . . 3 ⊢ (𝐴 + 𝐵) = 𝐹 | |
| 11 | 9, 10 | eqtr3i 2754 | . 2 ⊢ (𝐴 + (𝐶 + 1)) = 𝐹 |
| 12 | 6, 11 | eqtri 2752 | 1 ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 1c1 11069 + caddc 11071 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-addass 11133 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |