Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cfilfil | Structured version Visualization version GIF version |
Description: A Cauchy filter is a filter. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
cfilfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscfil 24500 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝐹 (𝐷 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)))) | |
2 | 1 | simprbda 499 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 ∃wrex 3071 ⊆ wss 3896 × cxp 5603 “ cima 5608 ‘cfv 6463 (class class class)co 7313 0cc0 10941 ℝ+crp 12800 [,)cico 13151 ∞Metcxmet 20653 Filcfil 23067 CauFilccfil 24487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-map 8663 df-xr 11083 df-xmet 20661 df-cfil 24490 |
This theorem is referenced by: cfil3i 24504 iscfil3 24508 cfilfcls 24509 iscmet3 24528 cfilresi 24530 cmetss 24551 relcmpcmet 24553 cfilucfil4 24556 fmcncfil 31987 |
Copyright terms: Public domain | W3C validator |