| Step | Hyp | Ref
| Expression |
| 1 | | isdomn2.b |
. . 3
⊢ 𝐵 = (Base‘𝑅) |
| 2 | | eqid 2736 |
. . 3
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 3 | | isdomn2.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 4 | 1, 2, 3 | isdomn 20670 |
. 2
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )))) |
| 5 | | dfss3 3952 |
. . . 4
⊢ ((𝐵 ∖ { 0 }) ⊆ 𝐸 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })𝑥 ∈ 𝐸) |
| 6 | | isdomn2.t |
. . . . . . . . 9
⊢ 𝐸 = (RLReg‘𝑅) |
| 7 | 6, 1, 2, 3 | isrrg 20663 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 8 | 7 | baib 535 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐸 ↔ ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 9 | 8 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 ∈ 𝐵 → ((𝑥 ≠ 0 → 𝑥 ∈ 𝐸) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )))) |
| 10 | 9 | ralbiia 3081 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 (𝑥 ≠ 0 → 𝑥 ∈ 𝐸) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 11 | | eldifsn 4767 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 )) |
| 12 | 11 | imbi1i 349 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐸) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸)) |
| 13 | | impexp 450 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → 𝑥 ∈ 𝐸) ↔ (𝑥 ∈ 𝐵 → (𝑥 ≠ 0 → 𝑥 ∈ 𝐸))) |
| 14 | 12, 13 | bitri 275 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐸) ↔ (𝑥 ∈ 𝐵 → (𝑥 ≠ 0 → 𝑥 ∈ 𝐸))) |
| 15 | 14 | ralbii2 3079 |
. . . . 5
⊢
(∀𝑥 ∈
(𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → 𝑥 ∈ 𝐸)) |
| 16 | | con34b 316 |
. . . . . . . . 9
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (¬ (𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
| 17 | | impexp 450 |
. . . . . . . . . 10
⊢ (((¬
𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ))) |
| 18 | | ioran 985 |
. . . . . . . . . . 11
⊢ (¬
(𝑥 = 0 ∨ 𝑦 = 0 ) ↔ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 )) |
| 19 | 18 | imbi1i 349 |
. . . . . . . . . 10
⊢ ((¬
(𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ ((¬ 𝑥 = 0 ∧ ¬ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
| 20 | | df-ne 2934 |
. . . . . . . . . . 11
⊢ (𝑥 ≠ 0 ↔ ¬ 𝑥 = 0 ) |
| 21 | | con34b 316 |
. . . . . . . . . . 11
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ) ↔ (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 )) |
| 22 | 20, 21 | imbi12i 350 |
. . . . . . . . . 10
⊢ ((𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) ↔ (¬ 𝑥 = 0 → (¬ 𝑦 = 0 → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ))) |
| 23 | 17, 19, 22 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((¬
(𝑥 = 0 ∨ 𝑦 = 0 ) → ¬ (𝑥(.r‘𝑅)𝑦) = 0 ) ↔ (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 24 | 16, 23 | bitri 275 |
. . . . . . . 8
⊢ (((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 25 | 24 | ralbii 3083 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑦 ∈ 𝐵 (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 26 | | r19.21v 3166 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝐵 (𝑥 ≠ 0 → ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 27 | 25, 26 | bitri 275 |
. . . . . 6
⊢
(∀𝑦 ∈
𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 28 | 27 | ralbii 3083 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ ∀𝑥 ∈ 𝐵 (𝑥 ≠ 0 → ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → 𝑦 = 0 ))) |
| 29 | 10, 15, 28 | 3bitr4i 303 |
. . . 4
⊢
(∀𝑥 ∈
(𝐵 ∖ { 0 })𝑥 ∈ 𝐸 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) |
| 30 | 5, 29 | bitr2i 276 |
. . 3
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 )) ↔ (𝐵 ∖ { 0 }) ⊆ 𝐸) |
| 31 | 30 | anbi2i 623 |
. 2
⊢ ((𝑅 ∈ NzRing ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(.r‘𝑅)𝑦) = 0 → (𝑥 = 0 ∨ 𝑦 = 0 ))) ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |
| 32 | 4, 31 | bitri 275 |
1
⊢ (𝑅 ∈ Domn ↔ (𝑅 ∈ NzRing ∧ (𝐵 ∖ { 0 }) ⊆ 𝐸)) |