Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islfld Structured version   Visualization version   GIF version

Theorem islfld 37524
Description: Properties that determine a linear functional. TODO: use this in place of islfl 37522 when it shortens the proof. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
islfld.v (𝜑𝑉 = (Base‘𝑊))
islfld.a (𝜑+ = (+g𝑊))
islfld.d (𝜑𝐷 = (Scalar‘𝑊))
islfld.s (𝜑· = ( ·𝑠𝑊))
islfld.k (𝜑𝐾 = (Base‘𝐷))
islfld.p (𝜑 = (+g𝐷))
islfld.t (𝜑× = (.r𝐷))
islfld.f (𝜑𝐹 = (LFnl‘𝑊))
islfld.u (𝜑𝐺:𝑉𝐾)
islfld.l ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
islfld.w (𝜑𝑊𝑋)
Assertion
Ref Expression
islfld (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐺   𝐾,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦   𝜑,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑟)   + (𝑥,𝑦,𝑟)   (𝑥,𝑦,𝑟)   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)   𝑋(𝑥,𝑦,𝑟)

Proof of Theorem islfld
StepHypRef Expression
1 islfld.w . . 3 (𝜑𝑊𝑋)
2 islfld.u . . . 4 (𝜑𝐺:𝑉𝐾)
3 islfld.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
4 islfld.k . . . . . 6 (𝜑𝐾 = (Base‘𝐷))
5 islfld.d . . . . . . 7 (𝜑𝐷 = (Scalar‘𝑊))
65fveq2d 6846 . . . . . 6 (𝜑 → (Base‘𝐷) = (Base‘(Scalar‘𝑊)))
74, 6eqtrd 2776 . . . . 5 (𝜑𝐾 = (Base‘(Scalar‘𝑊)))
83, 7feq23d 6663 . . . 4 (𝜑 → (𝐺:𝑉𝐾𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))))
92, 8mpbid 231 . . 3 (𝜑𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)))
10 islfld.l . . . . 5 ((𝜑 ∧ (𝑟𝐾𝑥𝑉𝑦𝑉)) → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
1110ralrimivvva 3200 . . . 4 (𝜑 → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
12 islfld.a . . . . . . . . . 10 (𝜑+ = (+g𝑊))
13 islfld.s . . . . . . . . . . 11 (𝜑· = ( ·𝑠𝑊))
1413oveqd 7374 . . . . . . . . . 10 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
15 eqidd 2737 . . . . . . . . . 10 (𝜑𝑦 = 𝑦)
1612, 14, 15oveq123d 7378 . . . . . . . . 9 (𝜑 → ((𝑟 · 𝑥) + 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦))
1716fveq2d 6846 . . . . . . . 8 (𝜑 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)))
18 islfld.p . . . . . . . . . 10 (𝜑 = (+g𝐷))
195fveq2d 6846 . . . . . . . . . 10 (𝜑 → (+g𝐷) = (+g‘(Scalar‘𝑊)))
2018, 19eqtrd 2776 . . . . . . . . 9 (𝜑 = (+g‘(Scalar‘𝑊)))
21 islfld.t . . . . . . . . . . 11 (𝜑× = (.r𝐷))
225fveq2d 6846 . . . . . . . . . . 11 (𝜑 → (.r𝐷) = (.r‘(Scalar‘𝑊)))
2321, 22eqtrd 2776 . . . . . . . . . 10 (𝜑× = (.r‘(Scalar‘𝑊)))
2423oveqd 7374 . . . . . . . . 9 (𝜑 → (𝑟 × (𝐺𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥)))
25 eqidd 2737 . . . . . . . . 9 (𝜑 → (𝐺𝑦) = (𝐺𝑦))
2620, 24, 25oveq123d 7378 . . . . . . . 8 (𝜑 → ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
2717, 26eqeq12d 2752 . . . . . . 7 (𝜑 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦))))
283, 27raleqbidv 3319 . . . . . 6 (𝜑 → (∀𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦))))
293, 28raleqbidv 3319 . . . . 5 (𝜑 → (∀𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦))))
307, 29raleqbidv 3319 . . . 4 (𝜑 → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦))))
3111, 30mpbid 231 . . 3 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))
32 eqid 2736 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
33 eqid 2736 . . . . 5 (+g𝑊) = (+g𝑊)
34 eqid 2736 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
35 eqid 2736 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
36 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
37 eqid 2736 . . . . 5 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
38 eqid 2736 . . . . 5 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
39 eqid 2736 . . . . 5 (LFnl‘𝑊) = (LFnl‘𝑊)
4032, 33, 34, 35, 36, 37, 38, 39islfl 37522 . . . 4 (𝑊𝑋 → (𝐺 ∈ (LFnl‘𝑊) ↔ (𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))))
4140biimpar 478 . . 3 ((𝑊𝑋 ∧ (𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺𝑥))(+g‘(Scalar‘𝑊))(𝐺𝑦)))) → 𝐺 ∈ (LFnl‘𝑊))
421, 9, 31, 41syl12anc 835 . 2 (𝜑𝐺 ∈ (LFnl‘𝑊))
43 islfld.f . 2 (𝜑𝐹 = (LFnl‘𝑊))
4442, 43eleqtrrd 2841 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  LFnlclfn 37519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-lfl 37520
This theorem is referenced by:  lflvscl  37539
  Copyright terms: Public domain W3C validator