Proof of Theorem islfld
Step | Hyp | Ref
| Expression |
1 | | islfld.w |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝑋) |
2 | | islfld.u |
. . . 4
⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
3 | | islfld.v |
. . . . 5
⊢ (𝜑 → 𝑉 = (Base‘𝑊)) |
4 | | islfld.k |
. . . . . 6
⊢ (𝜑 → 𝐾 = (Base‘𝐷)) |
5 | | islfld.d |
. . . . . . 7
⊢ (𝜑 → 𝐷 = (Scalar‘𝑊)) |
6 | 5 | fveq2d 6663 |
. . . . . 6
⊢ (𝜑 → (Base‘𝐷) =
(Base‘(Scalar‘𝑊))) |
7 | 4, 6 | eqtrd 2794 |
. . . . 5
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝑊))) |
8 | 3, 7 | feq23d 6494 |
. . . 4
⊢ (𝜑 → (𝐺:𝑉⟶𝐾 ↔ 𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)))) |
9 | 2, 8 | mpbid 235 |
. . 3
⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊))) |
10 | | islfld.l |
. . . . 5
⊢ ((𝜑 ∧ (𝑟 ∈ 𝐾 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) |
11 | 10 | ralrimivvva 3122 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦))) |
12 | | islfld.a |
. . . . . . . . . 10
⊢ (𝜑 → + =
(+g‘𝑊)) |
13 | | islfld.s |
. . . . . . . . . . 11
⊢ (𝜑 → · = (
·𝑠 ‘𝑊)) |
14 | 13 | oveqd 7168 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠
‘𝑊)𝑥)) |
15 | | eqidd 2760 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑦 = 𝑦) |
16 | 12, 14, 15 | oveq123d 7172 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑟 · 𝑥) + 𝑦) = ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) |
17 | 16 | fveq2d 6663 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦))) |
18 | | islfld.p |
. . . . . . . . . 10
⊢ (𝜑 → ⨣ =
(+g‘𝐷)) |
19 | 5 | fveq2d 6663 |
. . . . . . . . . 10
⊢ (𝜑 → (+g‘𝐷) =
(+g‘(Scalar‘𝑊))) |
20 | 18, 19 | eqtrd 2794 |
. . . . . . . . 9
⊢ (𝜑 → ⨣ =
(+g‘(Scalar‘𝑊))) |
21 | | islfld.t |
. . . . . . . . . . 11
⊢ (𝜑 → × =
(.r‘𝐷)) |
22 | 5 | fveq2d 6663 |
. . . . . . . . . . 11
⊢ (𝜑 → (.r‘𝐷) =
(.r‘(Scalar‘𝑊))) |
23 | 21, 22 | eqtrd 2794 |
. . . . . . . . . 10
⊢ (𝜑 → × =
(.r‘(Scalar‘𝑊))) |
24 | 23 | oveqd 7168 |
. . . . . . . . 9
⊢ (𝜑 → (𝑟 × (𝐺‘𝑥)) = (𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))) |
25 | | eqidd 2760 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘𝑦) = (𝐺‘𝑦)) |
26 | 20, 24, 25 | oveq123d 7172 |
. . . . . . . 8
⊢ (𝜑 → ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦))) |
27 | 17, 26 | eqeq12d 2775 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)) ↔ (𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦)))) |
28 | 3, 27 | raleqbidv 3320 |
. . . . . 6
⊢ (𝜑 → (∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦)))) |
29 | 3, 28 | raleqbidv 3320 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦)))) |
30 | 7, 29 | raleqbidv 3320 |
. . . 4
⊢ (𝜑 → (∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺‘𝑥)) ⨣ (𝐺‘𝑦)) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦)))) |
31 | 11, 30 | mpbid 235 |
. . 3
⊢ (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦))) |
32 | | eqid 2759 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
33 | | eqid 2759 |
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) |
34 | | eqid 2759 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
35 | | eqid 2759 |
. . . . 5
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
36 | | eqid 2759 |
. . . . 5
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
37 | | eqid 2759 |
. . . . 5
⊢
(+g‘(Scalar‘𝑊)) =
(+g‘(Scalar‘𝑊)) |
38 | | eqid 2759 |
. . . . 5
⊢
(.r‘(Scalar‘𝑊)) =
(.r‘(Scalar‘𝑊)) |
39 | | eqid 2759 |
. . . . 5
⊢
(LFnl‘𝑊) =
(LFnl‘𝑊) |
40 | 32, 33, 34, 35, 36, 37, 38, 39 | islfl 36629 |
. . . 4
⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ (LFnl‘𝑊) ↔ (𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ ∀𝑟 ∈
(Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦))))) |
41 | 40 | biimpar 482 |
. . 3
⊢ ((𝑊 ∈ 𝑋 ∧ (𝐺:(Base‘𝑊)⟶(Base‘(Scalar‘𝑊)) ∧ ∀𝑟 ∈
(Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(𝐺‘((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘(Scalar‘𝑊))(𝐺‘𝑥))(+g‘(Scalar‘𝑊))(𝐺‘𝑦)))) → 𝐺 ∈ (LFnl‘𝑊)) |
42 | 1, 9, 31, 41 | syl12anc 836 |
. 2
⊢ (𝜑 → 𝐺 ∈ (LFnl‘𝑊)) |
43 | | islfld.f |
. 2
⊢ (𝜑 → 𝐹 = (LFnl‘𝑊)) |
44 | 42, 43 | eleqtrrd 2856 |
1
⊢ (𝜑 → 𝐺 ∈ 𝐹) |