Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflf | Structured version Visualization version GIF version |
Description: A linear functional is a function from vectors to scalars. (lnfnfi 30403 analog.) (Contributed by NM, 15-Apr-2014.) |
Ref | Expression |
---|---|
lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lflf | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
3 | lflf.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
4 | eqid 2738 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
5 | lflf.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
6 | eqid 2738 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
7 | eqid 2738 | . . 3 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
8 | lflf.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | islfl 37074 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟( ·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)(𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))))) |
10 | 9 | simprbda 499 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 LFnlclfn 37071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-lfl 37072 |
This theorem is referenced by: lflcl 37078 lfl1 37084 lfladdcl 37085 lfladdcom 37086 lfladdass 37087 lfladd0l 37088 lflnegl 37090 lflvscl 37091 lflvsdi1 37092 lflvsdi2 37093 lflvsass 37095 lfl0sc 37096 lfl1sc 37098 ellkr 37103 lkr0f 37108 lkrsc 37111 eqlkr2 37114 eqlkr3 37115 ldualvaddval 37145 ldualvsval 37152 |
Copyright terms: Public domain | W3C validator |