Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflf Structured version   Visualization version   GIF version

Theorem lflf 39172
Description: A linear functional is a function from vectors to scalars. (lnfnfi 32021 analog.) (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflf ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)

Proof of Theorem lflf
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflf.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2731 . . 3 (+g𝑊) = (+g𝑊)
3 lflf.d . . 3 𝐷 = (Scalar‘𝑊)
4 eqid 2731 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 lflf.k . . 3 𝐾 = (Base‘𝐷)
6 eqid 2731 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2731 . . 3 (.r𝐷) = (.r𝐷)
8 lflf.f . . 3 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 39169 . 2 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)(𝐺𝑥))(+g𝐷)(𝐺𝑦)))))
109simprbda 498 1 ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  LFnlclfn 39166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-lfl 39167
This theorem is referenced by:  lflcl  39173  lfl1  39179  lfladdcl  39180  lfladdcom  39181  lfladdass  39182  lfladd0l  39183  lflnegl  39185  lflvscl  39186  lflvsdi1  39187  lflvsdi2  39188  lflvsass  39190  lfl0sc  39191  lfl1sc  39193  ellkr  39198  lkr0f  39203  lkrsc  39206  eqlkr2  39209  eqlkr3  39210  ldualvaddval  39240  ldualvsval  39247
  Copyright terms: Public domain W3C validator