Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflf Structured version   Visualization version   GIF version

Theorem lflf 39064
Description: A linear functional is a function from vectors to scalars. (lnfnfi 32060 analog.) (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflf ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)

Proof of Theorem lflf
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflf.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2737 . . 3 (+g𝑊) = (+g𝑊)
3 lflf.d . . 3 𝐷 = (Scalar‘𝑊)
4 eqid 2737 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 lflf.k . . 3 𝐾 = (Base‘𝐷)
6 eqid 2737 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2737 . . 3 (.r𝐷) = (.r𝐷)
8 lflf.f . . 3 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 39061 . 2 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)(𝐺𝑥))(+g𝐷)(𝐺𝑦)))))
109simprbda 498 1 ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Scalarcsca 17300   ·𝑠 cvsca 17301  LFnlclfn 39058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-lfl 39059
This theorem is referenced by:  lflcl  39065  lfl1  39071  lfladdcl  39072  lfladdcom  39073  lfladdass  39074  lfladd0l  39075  lflnegl  39077  lflvscl  39078  lflvsdi1  39079  lflvsdi2  39080  lflvsass  39082  lfl0sc  39083  lfl1sc  39085  ellkr  39090  lkr0f  39095  lkrsc  39098  eqlkr2  39101  eqlkr3  39102  ldualvaddval  39132  ldualvsval  39139
  Copyright terms: Public domain W3C validator