| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflf | Structured version Visualization version GIF version | ||
| Description: A linear functional is a function from vectors to scalars. (lnfnfi 31968 analog.) (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflf | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lflf.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | eqid 2735 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | lflf.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
| 6 | eqid 2735 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 7 | eqid 2735 | . . 3 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 8 | lflf.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islfl 39024 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟( ·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)(𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))))) |
| 10 | 9 | simprbda 498 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 +gcplusg 17269 .rcmulr 17270 Scalarcsca 17272 ·𝑠 cvsca 17273 LFnlclfn 39021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-map 8840 df-lfl 39022 |
| This theorem is referenced by: lflcl 39028 lfl1 39034 lfladdcl 39035 lfladdcom 39036 lfladdass 39037 lfladd0l 39038 lflnegl 39040 lflvscl 39041 lflvsdi1 39042 lflvsdi2 39043 lflvsass 39045 lfl0sc 39046 lfl1sc 39048 ellkr 39053 lkr0f 39058 lkrsc 39061 eqlkr2 39064 eqlkr3 39065 ldualvaddval 39095 ldualvsval 39102 |
| Copyright terms: Public domain | W3C validator |