| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflf | Structured version Visualization version GIF version | ||
| Description: A linear functional is a function from vectors to scalars. (lnfnfi 31985 analog.) (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflf | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lflf.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | lflf.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 7 | eqid 2729 | . . 3 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 8 | lflf.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islfl 39043 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟( ·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)(𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))))) |
| 10 | 9 | simprbda 498 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 LFnlclfn 39040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-lfl 39041 |
| This theorem is referenced by: lflcl 39047 lfl1 39053 lfladdcl 39054 lfladdcom 39055 lfladdass 39056 lfladd0l 39057 lflnegl 39059 lflvscl 39060 lflvsdi1 39061 lflvsdi2 39062 lflvsass 39064 lfl0sc 39065 lfl1sc 39067 ellkr 39072 lkr0f 39077 lkrsc 39080 eqlkr2 39083 eqlkr3 39084 ldualvaddval 39114 ldualvsval 39121 |
| Copyright terms: Public domain | W3C validator |