Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflf Structured version   Visualization version   GIF version

Theorem lflf 39056
Description: A linear functional is a function from vectors to scalars. (lnfnfi 31970 analog.) (Contributed by NM, 15-Apr-2014.)
Hypotheses
Ref Expression
lflf.d 𝐷 = (Scalar‘𝑊)
lflf.k 𝐾 = (Base‘𝐷)
lflf.v 𝑉 = (Base‘𝑊)
lflf.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lflf ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)

Proof of Theorem lflf
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflf.v . . 3 𝑉 = (Base‘𝑊)
2 eqid 2729 . . 3 (+g𝑊) = (+g𝑊)
3 lflf.d . . 3 𝐷 = (Scalar‘𝑊)
4 eqid 2729 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
5 lflf.k . . 3 𝐾 = (Base‘𝐷)
6 eqid 2729 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2729 . . 3 (.r𝐷) = (.r𝐷)
8 lflf.f . . 3 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 39053 . 2 (𝑊𝑋 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)(𝐺𝑥))(+g𝐷)(𝐺𝑦)))))
109simprbda 498 1 ((𝑊𝑋𝐺𝐹) → 𝐺:𝑉𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  LFnlclfn 39050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-lfl 39051
This theorem is referenced by:  lflcl  39057  lfl1  39063  lfladdcl  39064  lfladdcom  39065  lfladdass  39066  lfladd0l  39067  lflnegl  39069  lflvscl  39070  lflvsdi1  39071  lflvsdi2  39072  lflvsass  39074  lfl0sc  39075  lfl1sc  39077  ellkr  39082  lkr0f  39087  lkrsc  39090  eqlkr2  39093  eqlkr3  39094  ldualvaddval  39124  ldualvsval  39131
  Copyright terms: Public domain W3C validator