| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflf | Structured version Visualization version GIF version | ||
| Description: A linear functional is a function from vectors to scalars. (lnfnfi 31977 analog.) (Contributed by NM, 15-Apr-2014.) |
| Ref | Expression |
|---|---|
| lflf.d | ⊢ 𝐷 = (Scalar‘𝑊) |
| lflf.k | ⊢ 𝐾 = (Base‘𝐷) |
| lflf.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflf.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| Ref | Expression |
|---|---|
| lflf | ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflf.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 3 | lflf.d | . . 3 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 4 | eqid 2730 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 5 | lflf.k | . . 3 ⊢ 𝐾 = (Base‘𝐷) | |
| 6 | eqid 2730 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 7 | eqid 2730 | . . 3 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 8 | lflf.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | islfl 39060 | . 2 ⊢ (𝑊 ∈ 𝑋 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝐺‘((𝑟( ·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)(𝐺‘𝑥))(+g‘𝐷)(𝐺‘𝑦))))) |
| 10 | 9 | simprbda 498 | 1 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 LFnlclfn 39057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-lfl 39058 |
| This theorem is referenced by: lflcl 39064 lfl1 39070 lfladdcl 39071 lfladdcom 39072 lfladdass 39073 lfladd0l 39074 lflnegl 39076 lflvscl 39077 lflvsdi1 39078 lflvsdi2 39079 lflvsass 39081 lfl0sc 39082 lfl1sc 39084 ellkr 39089 lkr0f 39094 lkrsc 39097 eqlkr2 39100 eqlkr3 39101 ldualvaddval 39131 ldualvsval 39138 |
| Copyright terms: Public domain | W3C validator |