Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfli Structured version   Visualization version   GIF version

Theorem lfli 36199
Description: Property of a linear functional. (lnfnli 29819 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfli ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))

Proof of Theorem lfli
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . . 5 𝑉 = (Base‘𝑊)
2 lflset.a . . . . 5 + = (+g𝑊)
3 lflset.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . . 5 · = ( ·𝑠𝑊)
5 lflset.k . . . . 5 𝐾 = (Base‘𝐷)
6 lflset.p . . . . 5 = (+g𝐷)
7 lflset.t . . . . 5 × = (.r𝐷)
8 lflset.f . . . . 5 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 36198 . . . 4 (𝑊𝑍 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
109simplbda 502 . . 3 ((𝑊𝑍𝐺𝐹) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
11103adant3 1128 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
12 oveq1 7165 . . . . . 6 (𝑟 = 𝑅 → (𝑟 · 𝑥) = (𝑅 · 𝑥))
1312fvoveq1d 7180 . . . . 5 (𝑟 = 𝑅 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑥) + 𝑦)))
14 oveq1 7165 . . . . . 6 (𝑟 = 𝑅 → (𝑟 × (𝐺𝑥)) = (𝑅 × (𝐺𝑥)))
1514oveq1d 7173 . . . . 5 (𝑟 = 𝑅 → ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)))
1613, 15eqeq12d 2839 . . . 4 (𝑟 = 𝑅 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦))))
17 oveq2 7166 . . . . . 6 (𝑥 = 𝑋 → (𝑅 · 𝑥) = (𝑅 · 𝑋))
1817fvoveq1d 7180 . . . . 5 (𝑥 = 𝑋 → (𝐺‘((𝑅 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑦)))
19 fveq2 6672 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2019oveq2d 7174 . . . . . 6 (𝑥 = 𝑋 → (𝑅 × (𝐺𝑥)) = (𝑅 × (𝐺𝑋)))
2120oveq1d 7173 . . . . 5 (𝑥 = 𝑋 → ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)))
2218, 21eqeq12d 2839 . . . 4 (𝑥 = 𝑋 → ((𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦))))
23 oveq2 7166 . . . . . 6 (𝑦 = 𝑌 → ((𝑅 · 𝑋) + 𝑦) = ((𝑅 · 𝑋) + 𝑌))
2423fveq2d 6676 . . . . 5 (𝑦 = 𝑌 → (𝐺‘((𝑅 · 𝑋) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑌)))
25 fveq2 6672 . . . . . 6 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2625oveq2d 7174 . . . . 5 (𝑦 = 𝑌 → ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
2724, 26eqeq12d 2839 . . . 4 (𝑦 = 𝑌 → ((𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
2816, 22, 27rspc3v 3638 . . 3 ((𝑅𝐾𝑋𝑉𝑌𝑉) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
29283ad2ant3 1131 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
3011, 29mpd 15 1 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  LFnlclfn 36195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-lfl 36196
This theorem is referenced by:  lfl0  36203  lfladd  36204  lflsub  36205  lflmul  36206  lflnegcl  36213  lflvscl  36215  lkrlss  36233  hdmapln1  39044
  Copyright terms: Public domain W3C validator