Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfli Structured version   Visualization version   GIF version

Theorem lfli 37379
Description: Property of a linear functional. (lnfnli 30689 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfli ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))

Proof of Theorem lfli
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . . 5 𝑉 = (Base‘𝑊)
2 lflset.a . . . . 5 + = (+g𝑊)
3 lflset.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . . 5 · = ( ·𝑠𝑊)
5 lflset.k . . . . 5 𝐾 = (Base‘𝐷)
6 lflset.p . . . . 5 = (+g𝐷)
7 lflset.t . . . . 5 × = (.r𝐷)
8 lflset.f . . . . 5 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 37378 . . . 4 (𝑊𝑍 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
109simplbda 501 . . 3 ((𝑊𝑍𝐺𝐹) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
11103adant3 1132 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
12 oveq1 7348 . . . . . 6 (𝑟 = 𝑅 → (𝑟 · 𝑥) = (𝑅 · 𝑥))
1312fvoveq1d 7363 . . . . 5 (𝑟 = 𝑅 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑥) + 𝑦)))
14 oveq1 7348 . . . . . 6 (𝑟 = 𝑅 → (𝑟 × (𝐺𝑥)) = (𝑅 × (𝐺𝑥)))
1514oveq1d 7356 . . . . 5 (𝑟 = 𝑅 → ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)))
1613, 15eqeq12d 2753 . . . 4 (𝑟 = 𝑅 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦))))
17 oveq2 7349 . . . . . 6 (𝑥 = 𝑋 → (𝑅 · 𝑥) = (𝑅 · 𝑋))
1817fvoveq1d 7363 . . . . 5 (𝑥 = 𝑋 → (𝐺‘((𝑅 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑦)))
19 fveq2 6829 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2019oveq2d 7357 . . . . . 6 (𝑥 = 𝑋 → (𝑅 × (𝐺𝑥)) = (𝑅 × (𝐺𝑋)))
2120oveq1d 7356 . . . . 5 (𝑥 = 𝑋 → ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)))
2218, 21eqeq12d 2753 . . . 4 (𝑥 = 𝑋 → ((𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦))))
23 oveq2 7349 . . . . . 6 (𝑦 = 𝑌 → ((𝑅 · 𝑋) + 𝑦) = ((𝑅 · 𝑋) + 𝑌))
2423fveq2d 6833 . . . . 5 (𝑦 = 𝑌 → (𝐺‘((𝑅 · 𝑋) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑌)))
25 fveq2 6829 . . . . . 6 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2625oveq2d 7357 . . . . 5 (𝑦 = 𝑌 → ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
2724, 26eqeq12d 2753 . . . 4 (𝑦 = 𝑌 → ((𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
2816, 22, 27rspc3v 3585 . . 3 ((𝑅𝐾𝑋𝑉𝑌𝑉) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
29283ad2ant3 1135 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
3011, 29mpd 15 1 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wf 6479  cfv 6483  (class class class)co 7341  Basecbs 17009  +gcplusg 17059  .rcmulr 17060  Scalarcsca 17062   ·𝑠 cvsca 17063  LFnlclfn 37375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8692  df-lfl 37376
This theorem is referenced by:  lfl0  37383  lfladd  37384  lflsub  37385  lflmul  37386  lflnegcl  37393  lflvscl  37395  lkrlss  37413  hdmapln1  40225
  Copyright terms: Public domain W3C validator