Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfli Structured version   Visualization version   GIF version

Theorem lfli 37075
Description: Property of a linear functional. (lnfnli 30402 analog.) (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lflset.v 𝑉 = (Base‘𝑊)
lflset.a + = (+g𝑊)
lflset.d 𝐷 = (Scalar‘𝑊)
lflset.s · = ( ·𝑠𝑊)
lflset.k 𝐾 = (Base‘𝐷)
lflset.p = (+g𝐷)
lflset.t × = (.r𝐷)
lflset.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfli ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))

Proof of Theorem lfli
Dummy variables 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflset.v . . . . 5 𝑉 = (Base‘𝑊)
2 lflset.a . . . . 5 + = (+g𝑊)
3 lflset.d . . . . 5 𝐷 = (Scalar‘𝑊)
4 lflset.s . . . . 5 · = ( ·𝑠𝑊)
5 lflset.k . . . . 5 𝐾 = (Base‘𝐷)
6 lflset.p . . . . 5 = (+g𝐷)
7 lflset.t . . . . 5 × = (.r𝐷)
8 lflset.f . . . . 5 𝐹 = (LFnl‘𝑊)
91, 2, 3, 4, 5, 6, 7, 8islfl 37074 . . . 4 (𝑊𝑍 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))))
109simplbda 500 . . 3 ((𝑊𝑍𝐺𝐹) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
11103adant3 1131 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → ∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)))
12 oveq1 7282 . . . . . 6 (𝑟 = 𝑅 → (𝑟 · 𝑥) = (𝑅 · 𝑥))
1312fvoveq1d 7297 . . . . 5 (𝑟 = 𝑅 → (𝐺‘((𝑟 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑥) + 𝑦)))
14 oveq1 7282 . . . . . 6 (𝑟 = 𝑅 → (𝑟 × (𝐺𝑥)) = (𝑅 × (𝐺𝑥)))
1514oveq1d 7290 . . . . 5 (𝑟 = 𝑅 → ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)))
1613, 15eqeq12d 2754 . . . 4 (𝑟 = 𝑅 → ((𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦))))
17 oveq2 7283 . . . . . 6 (𝑥 = 𝑋 → (𝑅 · 𝑥) = (𝑅 · 𝑋))
1817fvoveq1d 7297 . . . . 5 (𝑥 = 𝑋 → (𝐺‘((𝑅 · 𝑥) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑦)))
19 fveq2 6774 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2019oveq2d 7291 . . . . . 6 (𝑥 = 𝑋 → (𝑅 × (𝐺𝑥)) = (𝑅 × (𝐺𝑋)))
2120oveq1d 7290 . . . . 5 (𝑥 = 𝑋 → ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)))
2218, 21eqeq12d 2754 . . . 4 (𝑥 = 𝑋 → ((𝐺‘((𝑅 · 𝑥) + 𝑦)) = ((𝑅 × (𝐺𝑥)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦))))
23 oveq2 7283 . . . . . 6 (𝑦 = 𝑌 → ((𝑅 · 𝑋) + 𝑦) = ((𝑅 · 𝑋) + 𝑌))
2423fveq2d 6778 . . . . 5 (𝑦 = 𝑌 → (𝐺‘((𝑅 · 𝑋) + 𝑦)) = (𝐺‘((𝑅 · 𝑋) + 𝑌)))
25 fveq2 6774 . . . . . 6 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2625oveq2d 7291 . . . . 5 (𝑦 = 𝑌 → ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
2724, 26eqeq12d 2754 . . . 4 (𝑦 = 𝑌 → ((𝐺‘((𝑅 · 𝑋) + 𝑦)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑦)) ↔ (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
2816, 22, 27rspc3v 3573 . . 3 ((𝑅𝐾𝑋𝑉𝑌𝑉) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
29283ad2ant3 1134 . 2 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (∀𝑟𝐾𝑥𝑉𝑦𝑉 (𝐺‘((𝑟 · 𝑥) + 𝑦)) = ((𝑟 × (𝐺𝑥)) (𝐺𝑦)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌))))
3011, 29mpd 15 1 ((𝑊𝑍𝐺𝐹 ∧ (𝑅𝐾𝑋𝑉𝑌𝑉)) → (𝐺‘((𝑅 · 𝑋) + 𝑌)) = ((𝑅 × (𝐺𝑋)) (𝐺𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-lfl 37072
This theorem is referenced by:  lfl0  37079  lfladd  37080  lflsub  37081  lflmul  37082  lflnegcl  37089  lflvscl  37091  lkrlss  37109  hdmapln1  39920
  Copyright terms: Public domain W3C validator