Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version |
Description: Lemma for lduallmod 37167. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
lduallmod.t | ⊢ × = (.r‘𝑅) |
lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
Ref | Expression |
---|---|
lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | 1, 2, 3, 4 | ldualvbase 37140 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
6 | 5 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
7 | eqidd 2739 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
10 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
11 | 8, 9, 2, 10, 4 | ldualsca 37146 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
12 | 11 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
16 | 9, 15 | opprbas 19869 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
18 | eqid 2738 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 9, 18 | oppradd 19871 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
21 | 11 | fveq2d 6778 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
22 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 9, 22 | oppr1 19876 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
25 | 8 | lmodring 20131 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
26 | 9 | opprring 19873 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
28 | 2, 4 | ldualgrp 37160 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
29 | 4 | 3ad2ant1 1132 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
30 | simp2 1136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
31 | simp3 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 37153 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
33 | eqid 2738 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
34 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
35 | simpr1 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
36 | simpr2 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
37 | simpr3 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 37157 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
39 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
40 | simpr1 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
41 | simpr2 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
42 | simpr3 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 37158 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
44 | eqid 2738 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 37156 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
48 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
49 | 15, 22 | ringidcl 19807 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
51 | 50 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
52 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 37151 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 37098 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
55 | 53, 54 | eqtrd 2778 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20129 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {csn 4561 × cxp 5587 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 1rcur 19737 Ringcrg 19783 opprcoppr 19861 LModclmod 20123 LFnlclfn 37071 LDualcld 37137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-lmod 20125 df-lfl 37072 df-ldual 37138 |
This theorem is referenced by: lduallmod 37167 |
Copyright terms: Public domain | W3C validator |