| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lduallmod 39325. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
| lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
| lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
| lduallmod.t | ⊢ × = (.r‘𝑅) |
| lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
| lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| Ref | Expression |
|---|---|
| lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | 1, 2, 3, 4 | ldualvbase 39298 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 6 | 5 | eqcomd 2739 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
| 7 | eqidd 2734 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
| 8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 10 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 11 | 8, 9, 2, 10, 4 | ldualsca 39304 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
| 12 | 11 | eqcomd 2739 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
| 13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
| 15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 16 | 9, 15 | opprbas 20270 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| 18 | eqid 2733 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 9, 18 | oppradd 20271 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
| 21 | 11 | fveq2d 6835 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
| 22 | eqid 2733 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | 9, 22 | oppr1 20277 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
| 25 | 8 | lmodring 20810 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 26 | 9 | opprring 20274 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
| 28 | 2, 4 | ldualgrp 39318 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
| 29 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 30 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
| 31 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
| 32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 39311 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| 33 | eqid 2733 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 34 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 35 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 36 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
| 37 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 39315 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
| 39 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 40 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 39316 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
| 44 | eqid 2733 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
| 45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 39314 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 49 | 15, 22 | ringidcl 20191 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
| 50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
| 51 | 50 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
| 52 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 39309 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
| 54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 39256 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
| 55 | 53, 54 | eqtrd 2768 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
| 56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20808 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 {csn 4577 × cxp 5619 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 1rcur 20107 Ringcrg 20159 opprcoppr 20263 LModclmod 20802 LFnlclfn 39229 LDualcld 39295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-lmod 20804 df-lfl 39230 df-ldual 39296 |
| This theorem is referenced by: lduallmod 39325 |
| Copyright terms: Public domain | W3C validator |