Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version |
Description: Lemma for lduallmod 37469. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
lduallmod.t | ⊢ × = (.r‘𝑅) |
lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
Ref | Expression |
---|---|
lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
3 | eqid 2737 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | 1, 2, 3, 4 | ldualvbase 37442 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
6 | 5 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
7 | eqidd 2738 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
10 | eqid 2737 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
11 | 8, 9, 2, 10, 4 | ldualsca 37448 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
12 | 11 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
16 | 9, 15 | opprbas 19964 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
18 | eqid 2737 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 9, 18 | oppradd 19966 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
21 | 11 | fveq2d 6834 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
22 | eqid 2737 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 9, 22 | oppr1 19971 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
25 | 8 | lmodring 20237 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
26 | 9 | opprring 19968 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
28 | 2, 4 | ldualgrp 37462 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
29 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
30 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
31 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 37455 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
33 | eqid 2737 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
34 | 4 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
35 | simpr1 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
36 | simpr2 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
37 | simpr3 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 37459 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
39 | 4 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
40 | simpr1 1194 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
41 | simpr2 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
42 | simpr3 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 37460 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
44 | eqid 2737 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 37458 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
48 | 4 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
49 | 15, 22 | ringidcl 19902 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
51 | 50 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
52 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 37453 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 37400 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
55 | 53, 54 | eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20235 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {csn 4578 × cxp 5623 ‘cfv 6484 (class class class)co 7342 ∘f cof 7598 Basecbs 17010 +gcplusg 17060 .rcmulr 17061 Scalarcsca 17063 ·𝑠 cvsca 17064 1rcur 19832 Ringcrg 19878 opprcoppr 19956 LModclmod 20229 LFnlclfn 37373 LDualcld 37439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-tpos 8117 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-sbg 18679 df-cmn 19484 df-abl 19485 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-lmod 20231 df-lfl 37374 df-ldual 37440 |
This theorem is referenced by: lduallmod 37469 |
Copyright terms: Public domain | W3C validator |