| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lduallmod 39171. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
| lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
| lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
| lduallmod.t | ⊢ × = (.r‘𝑅) |
| lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
| lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| Ref | Expression |
|---|---|
| lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | 1, 2, 3, 4 | ldualvbase 39144 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 6 | 5 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
| 7 | eqidd 2736 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
| 8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 10 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 11 | 8, 9, 2, 10, 4 | ldualsca 39150 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
| 12 | 11 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
| 13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
| 15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 16 | 9, 15 | opprbas 20303 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| 18 | eqid 2735 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 9, 18 | oppradd 20304 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
| 21 | 11 | fveq2d 6880 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
| 22 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | 9, 22 | oppr1 20310 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
| 25 | 8 | lmodring 20825 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 26 | 9 | opprring 20307 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
| 28 | 2, 4 | ldualgrp 39164 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
| 29 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 30 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
| 31 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
| 32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 39157 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| 33 | eqid 2735 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 34 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 35 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 36 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
| 37 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 39161 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
| 39 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 40 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 39162 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
| 44 | eqid 2735 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
| 45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 39160 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 49 | 15, 22 | ringidcl 20225 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
| 50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
| 51 | 50 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
| 52 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 39155 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
| 54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 39102 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
| 55 | 53, 54 | eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
| 56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20823 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 Basecbs 17228 +gcplusg 17271 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 1rcur 20141 Ringcrg 20193 opprcoppr 20296 LModclmod 20817 LFnlclfn 39075 LDualcld 39141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-lmod 20819 df-lfl 39076 df-ldual 39142 |
| This theorem is referenced by: lduallmod 39171 |
| Copyright terms: Public domain | W3C validator |