Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   GIF version

Theorem lduallmodlem 39170
Description: Lemma for lduallmod 39171. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d 𝐷 = (LDual‘𝑊)
lduallmod.w (𝜑𝑊 ∈ LMod)
lduallmod.v 𝑉 = (Base‘𝑊)
lduallmod.p + = ∘f (+g𝑊)
lduallmod.f 𝐹 = (LFnl‘𝑊)
lduallmod.r 𝑅 = (Scalar‘𝑊)
lduallmod.k 𝐾 = (Base‘𝑅)
lduallmod.t × = (.r𝑅)
lduallmod.o 𝑂 = (oppr𝑅)
lduallmod.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
lduallmodlem (𝜑𝐷 ∈ LMod)

Proof of Theorem lduallmodlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4 𝐹 = (LFnl‘𝑊)
2 lduallmod.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2735 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 lduallmod.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 39144 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2741 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2736 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 lduallmod.r . . . 4 𝑅 = (Scalar‘𝑊)
9 lduallmod.o . . . 4 𝑂 = (oppr𝑅)
10 eqid 2735 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
118, 9, 2, 10, 4ldualsca 39150 . . 3 (𝜑 → (Scalar‘𝐷) = 𝑂)
1211eqcomd 2741 . 2 (𝜑𝑂 = (Scalar‘𝐷))
13 lduallmod.s . . 3 · = ( ·𝑠𝐷)
1413a1i 11 . 2 (𝜑· = ( ·𝑠𝐷))
15 lduallmod.k . . . 4 𝐾 = (Base‘𝑅)
169, 15opprbas 20303 . . 3 𝐾 = (Base‘𝑂)
1716a1i 11 . 2 (𝜑𝐾 = (Base‘𝑂))
18 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
199, 18oppradd 20304 . . 3 (+g𝑅) = (+g𝑂)
2019a1i 11 . 2 (𝜑 → (+g𝑅) = (+g𝑂))
2111fveq2d 6880 . 2 (𝜑 → (.r‘(Scalar‘𝐷)) = (.r𝑂))
22 eqid 2735 . . . 4 (1r𝑅) = (1r𝑅)
239, 22oppr1 20310 . . 3 (1r𝑅) = (1r𝑂)
2423a1i 11 . 2 (𝜑 → (1r𝑅) = (1r𝑂))
258lmodring 20825 . . 3 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
269opprring 20307 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
274, 25, 263syl 18 . 2 (𝜑𝑂 ∈ Ring)
282, 4ldualgrp 39164 . 2 (𝜑𝐷 ∈ Grp)
2943ad2ant1 1133 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑊 ∈ LMod)
30 simp2 1137 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑥𝐾)
31 simp3 1138 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑦𝐹)
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 39157 . 2 ((𝜑𝑥𝐾𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
33 eqid 2735 . . 3 (+g𝐷) = (+g𝐷)
344adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
35 simpr1 1195 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑥𝐾)
36 simpr2 1196 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
37 simpr3 1197 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 39161 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → (𝑥 · (𝑦(+g𝐷)𝑧)) = ((𝑥 · 𝑦)(+g𝐷)(𝑥 · 𝑧)))
394adantr 480 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑊 ∈ LMod)
40 simpr1 1195 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑥𝐾)
41 simpr2 1196 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑦𝐾)
42 simpr3 1197 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑧𝐹)
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 39162 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝐷)(𝑦 · 𝑧)))
44 eqid 2735 . . 3 (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷))
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 39160 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
46 lduallmod.v . . . 4 𝑉 = (Base‘𝑊)
47 lduallmod.t . . . 4 × = (.r𝑅)
484adantr 480 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
4915, 22ringidcl 20225 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
504, 25, 493syl 18 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
5150adantr 480 . . . 4 ((𝜑𝑥𝐹) → (1r𝑅) ∈ 𝐾)
52 simpr 484 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 39155 . . 3 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = (𝑥f × (𝑉 × {(1r𝑅)})))
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 39102 . . 3 ((𝜑𝑥𝐹) → (𝑥f × (𝑉 × {(1r𝑅)})) = 𝑥)
5553, 54eqtrd 2770 . 2 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = 𝑥)
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 20823 1 (𝜑𝐷 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {csn 4601   × cxp 5652  cfv 6531  (class class class)co 7405  f cof 7669  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  1rcur 20141  Ringcrg 20193  opprcoppr 20296  LModclmod 20817  LFnlclfn 39075  LDualcld 39141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-lmod 20819  df-lfl 39076  df-ldual 39142
This theorem is referenced by:  lduallmod  39171
  Copyright terms: Public domain W3C validator