| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lduallmod 39119. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
| lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
| lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
| lduallmod.t | ⊢ × = (.r‘𝑅) |
| lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
| lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| Ref | Expression |
|---|---|
| lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | 1, 2, 3, 4 | ldualvbase 39092 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 6 | 5 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
| 7 | eqidd 2730 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
| 8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 10 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 11 | 8, 9, 2, 10, 4 | ldualsca 39098 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
| 12 | 11 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
| 13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
| 15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 16 | 9, 15 | opprbas 20228 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| 18 | eqid 2729 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 9, 18 | oppradd 20229 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
| 21 | 11 | fveq2d 6844 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
| 22 | eqid 2729 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | 9, 22 | oppr1 20235 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
| 25 | 8 | lmodring 20750 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 26 | 9 | opprring 20232 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
| 28 | 2, 4 | ldualgrp 39112 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
| 29 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 30 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
| 31 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
| 32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 39105 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| 33 | eqid 2729 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 34 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 35 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 36 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
| 37 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 39109 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
| 39 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 40 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 39110 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
| 44 | eqid 2729 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
| 45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 39108 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 49 | 15, 22 | ringidcl 20150 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
| 50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
| 51 | 50 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
| 52 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 39103 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
| 54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 39050 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
| 55 | 53, 54 | eqtrd 2764 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
| 56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20748 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {csn 4585 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 Scalarcsca 17199 ·𝑠 cvsca 17200 1rcur 20066 Ringcrg 20118 opprcoppr 20221 LModclmod 20742 LFnlclfn 39023 LDualcld 39089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-lmod 20744 df-lfl 39024 df-ldual 39090 |
| This theorem is referenced by: lduallmod 39119 |
| Copyright terms: Public domain | W3C validator |