Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   GIF version

Theorem lduallmodlem 36328
Description: Lemma for lduallmod 36329. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d 𝐷 = (LDual‘𝑊)
lduallmod.w (𝜑𝑊 ∈ LMod)
lduallmod.v 𝑉 = (Base‘𝑊)
lduallmod.p + = ∘f (+g𝑊)
lduallmod.f 𝐹 = (LFnl‘𝑊)
lduallmod.r 𝑅 = (Scalar‘𝑊)
lduallmod.k 𝐾 = (Base‘𝑅)
lduallmod.t × = (.r𝑅)
lduallmod.o 𝑂 = (oppr𝑅)
lduallmod.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
lduallmodlem (𝜑𝐷 ∈ LMod)

Proof of Theorem lduallmodlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4 𝐹 = (LFnl‘𝑊)
2 lduallmod.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2821 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 lduallmod.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 36302 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2827 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2822 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 lduallmod.r . . . 4 𝑅 = (Scalar‘𝑊)
9 lduallmod.o . . . 4 𝑂 = (oppr𝑅)
10 eqid 2821 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
118, 9, 2, 10, 4ldualsca 36308 . . 3 (𝜑 → (Scalar‘𝐷) = 𝑂)
1211eqcomd 2827 . 2 (𝜑𝑂 = (Scalar‘𝐷))
13 lduallmod.s . . 3 · = ( ·𝑠𝐷)
1413a1i 11 . 2 (𝜑· = ( ·𝑠𝐷))
15 lduallmod.k . . . 4 𝐾 = (Base‘𝑅)
169, 15opprbas 19357 . . 3 𝐾 = (Base‘𝑂)
1716a1i 11 . 2 (𝜑𝐾 = (Base‘𝑂))
18 eqid 2821 . . . 4 (+g𝑅) = (+g𝑅)
199, 18oppradd 19358 . . 3 (+g𝑅) = (+g𝑂)
2019a1i 11 . 2 (𝜑 → (+g𝑅) = (+g𝑂))
2111fveq2d 6647 . 2 (𝜑 → (.r‘(Scalar‘𝐷)) = (.r𝑂))
22 eqid 2821 . . . 4 (1r𝑅) = (1r𝑅)
239, 22oppr1 19362 . . 3 (1r𝑅) = (1r𝑂)
2423a1i 11 . 2 (𝜑 → (1r𝑅) = (1r𝑂))
258lmodring 19617 . . 3 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
269opprring 19359 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
274, 25, 263syl 18 . 2 (𝜑𝑂 ∈ Ring)
282, 4ldualgrp 36322 . 2 (𝜑𝐷 ∈ Grp)
2943ad2ant1 1130 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑊 ∈ LMod)
30 simp2 1134 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑥𝐾)
31 simp3 1135 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑦𝐹)
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 36315 . 2 ((𝜑𝑥𝐾𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
33 eqid 2821 . . 3 (+g𝐷) = (+g𝐷)
344adantr 484 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
35 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑥𝐾)
36 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
37 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 36319 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → (𝑥 · (𝑦(+g𝐷)𝑧)) = ((𝑥 · 𝑦)(+g𝐷)(𝑥 · 𝑧)))
394adantr 484 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑊 ∈ LMod)
40 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑥𝐾)
41 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑦𝐾)
42 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑧𝐹)
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 36320 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝐷)(𝑦 · 𝑧)))
44 eqid 2821 . . 3 (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷))
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 36318 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
46 lduallmod.v . . . 4 𝑉 = (Base‘𝑊)
47 lduallmod.t . . . 4 × = (.r𝑅)
484adantr 484 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
4915, 22ringidcl 19296 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
504, 25, 493syl 18 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
5150adantr 484 . . . 4 ((𝜑𝑥𝐹) → (1r𝑅) ∈ 𝐾)
52 simpr 488 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 36313 . . 3 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = (𝑥f × (𝑉 × {(1r𝑅)})))
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 36260 . . 3 ((𝜑𝑥𝐹) → (𝑥f × (𝑉 × {(1r𝑅)})) = 𝑥)
5553, 54eqtrd 2856 . 2 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = 𝑥)
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 19615 1 (𝜑𝐷 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  {csn 4540   × cxp 5526  cfv 6328  (class class class)co 7130  f cof 7382  Basecbs 16461  +gcplusg 16543  .rcmulr 16544  Scalarcsca 16546   ·𝑠 cvsca 16547  1rcur 19229  Ringcrg 19275  opprcoppr 19350  LModclmod 19609  LFnlclfn 36233  LDualcld 36299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-tpos 7867  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-plusg 16556  df-mulr 16557  df-sca 16559  df-vsca 16560  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-cmn 18886  df-abl 18887  df-mgp 19218  df-ur 19230  df-ring 19277  df-oppr 19351  df-lmod 19611  df-lfl 36234  df-ldual 36300
This theorem is referenced by:  lduallmod  36329
  Copyright terms: Public domain W3C validator