| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version | ||
| Description: Lemma for lduallmod 39192. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
| lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
| lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
| lduallmod.t | ⊢ × = (.r‘𝑅) |
| lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
| lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| Ref | Expression |
|---|---|
| lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | 1, 2, 3, 4 | ldualvbase 39165 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
| 6 | 5 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
| 7 | eqidd 2732 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
| 8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 11 | 8, 9, 2, 10, 4 | ldualsca 39171 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
| 12 | 11 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
| 13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
| 15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 16 | 9, 15 | opprbas 20256 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
| 17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
| 18 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 19 | 9, 18 | oppradd 20257 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
| 21 | 11 | fveq2d 6821 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
| 22 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 23 | 9, 22 | oppr1 20263 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
| 24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
| 25 | 8 | lmodring 20796 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 26 | 9 | opprring 20260 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
| 27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
| 28 | 2, 4 | ldualgrp 39185 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
| 29 | 4 | 3ad2ant1 1133 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 30 | simp2 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
| 31 | simp3 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
| 32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 39178 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
| 33 | eqid 2731 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 34 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 35 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 36 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
| 37 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 39182 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
| 39 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
| 40 | simpr1 1195 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
| 41 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
| 42 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
| 43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 39183 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
| 44 | eqid 2731 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
| 45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 39181 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 48 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
| 49 | 15, 22 | ringidcl 20178 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
| 50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
| 51 | 50 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
| 52 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
| 53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 39176 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
| 54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 39123 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
| 55 | 53, 54 | eqtrd 2766 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
| 56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20794 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4571 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Scalarcsca 17159 ·𝑠 cvsca 17160 1rcur 20094 Ringcrg 20146 opprcoppr 20249 LModclmod 20788 LFnlclfn 39096 LDualcld 39162 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-lmod 20790 df-lfl 39097 df-ldual 39163 |
| This theorem is referenced by: lduallmod 39192 |
| Copyright terms: Public domain | W3C validator |