Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   GIF version

Theorem lduallmodlem 37468
Description: Lemma for lduallmod 37469. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d 𝐷 = (LDual‘𝑊)
lduallmod.w (𝜑𝑊 ∈ LMod)
lduallmod.v 𝑉 = (Base‘𝑊)
lduallmod.p + = ∘f (+g𝑊)
lduallmod.f 𝐹 = (LFnl‘𝑊)
lduallmod.r 𝑅 = (Scalar‘𝑊)
lduallmod.k 𝐾 = (Base‘𝑅)
lduallmod.t × = (.r𝑅)
lduallmod.o 𝑂 = (oppr𝑅)
lduallmod.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
lduallmodlem (𝜑𝐷 ∈ LMod)

Proof of Theorem lduallmodlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4 𝐹 = (LFnl‘𝑊)
2 lduallmod.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2737 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 lduallmod.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 37442 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2743 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2738 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 lduallmod.r . . . 4 𝑅 = (Scalar‘𝑊)
9 lduallmod.o . . . 4 𝑂 = (oppr𝑅)
10 eqid 2737 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
118, 9, 2, 10, 4ldualsca 37448 . . 3 (𝜑 → (Scalar‘𝐷) = 𝑂)
1211eqcomd 2743 . 2 (𝜑𝑂 = (Scalar‘𝐷))
13 lduallmod.s . . 3 · = ( ·𝑠𝐷)
1413a1i 11 . 2 (𝜑· = ( ·𝑠𝐷))
15 lduallmod.k . . . 4 𝐾 = (Base‘𝑅)
169, 15opprbas 19964 . . 3 𝐾 = (Base‘𝑂)
1716a1i 11 . 2 (𝜑𝐾 = (Base‘𝑂))
18 eqid 2737 . . . 4 (+g𝑅) = (+g𝑅)
199, 18oppradd 19966 . . 3 (+g𝑅) = (+g𝑂)
2019a1i 11 . 2 (𝜑 → (+g𝑅) = (+g𝑂))
2111fveq2d 6834 . 2 (𝜑 → (.r‘(Scalar‘𝐷)) = (.r𝑂))
22 eqid 2737 . . . 4 (1r𝑅) = (1r𝑅)
239, 22oppr1 19971 . . 3 (1r𝑅) = (1r𝑂)
2423a1i 11 . 2 (𝜑 → (1r𝑅) = (1r𝑂))
258lmodring 20237 . . 3 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
269opprring 19968 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
274, 25, 263syl 18 . 2 (𝜑𝑂 ∈ Ring)
282, 4ldualgrp 37462 . 2 (𝜑𝐷 ∈ Grp)
2943ad2ant1 1133 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑊 ∈ LMod)
30 simp2 1137 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑥𝐾)
31 simp3 1138 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑦𝐹)
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 37455 . 2 ((𝜑𝑥𝐾𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
33 eqid 2737 . . 3 (+g𝐷) = (+g𝐷)
344adantr 482 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
35 simpr1 1194 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑥𝐾)
36 simpr2 1195 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
37 simpr3 1196 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 37459 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → (𝑥 · (𝑦(+g𝐷)𝑧)) = ((𝑥 · 𝑦)(+g𝐷)(𝑥 · 𝑧)))
394adantr 482 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑊 ∈ LMod)
40 simpr1 1194 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑥𝐾)
41 simpr2 1195 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑦𝐾)
42 simpr3 1196 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑧𝐹)
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 37460 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝐷)(𝑦 · 𝑧)))
44 eqid 2737 . . 3 (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷))
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 37458 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
46 lduallmod.v . . . 4 𝑉 = (Base‘𝑊)
47 lduallmod.t . . . 4 × = (.r𝑅)
484adantr 482 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
4915, 22ringidcl 19902 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
504, 25, 493syl 18 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
5150adantr 482 . . . 4 ((𝜑𝑥𝐹) → (1r𝑅) ∈ 𝐾)
52 simpr 486 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 37453 . . 3 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = (𝑥f × (𝑉 × {(1r𝑅)})))
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 37400 . . 3 ((𝜑𝑥𝐹) → (𝑥f × (𝑉 × {(1r𝑅)})) = 𝑥)
5553, 54eqtrd 2777 . 2 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = 𝑥)
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 20235 1 (𝜑𝐷 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  {csn 4578   × cxp 5623  cfv 6484  (class class class)co 7342  f cof 7598  Basecbs 17010  +gcplusg 17060  .rcmulr 17061  Scalarcsca 17063   ·𝑠 cvsca 17064  1rcur 19832  Ringcrg 19878  opprcoppr 19956  LModclmod 20229  LFnlclfn 37373  LDualcld 37439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-tp 4583  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-of 7600  df-om 7786  df-1st 7904  df-2nd 7905  df-tpos 8117  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-0g 17250  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-grp 18677  df-minusg 18678  df-sbg 18679  df-cmn 19484  df-abl 19485  df-mgp 19816  df-ur 19833  df-ring 19880  df-oppr 19957  df-lmod 20231  df-lfl 37374  df-ldual 37440
This theorem is referenced by:  lduallmod  37469
  Copyright terms: Public domain W3C validator