Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   GIF version

Theorem lduallmodlem 38754
Description: Lemma for lduallmod 38755. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d 𝐷 = (LDual‘𝑊)
lduallmod.w (𝜑𝑊 ∈ LMod)
lduallmod.v 𝑉 = (Base‘𝑊)
lduallmod.p + = ∘f (+g𝑊)
lduallmod.f 𝐹 = (LFnl‘𝑊)
lduallmod.r 𝑅 = (Scalar‘𝑊)
lduallmod.k 𝐾 = (Base‘𝑅)
lduallmod.t × = (.r𝑅)
lduallmod.o 𝑂 = (oppr𝑅)
lduallmod.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
lduallmodlem (𝜑𝐷 ∈ LMod)

Proof of Theorem lduallmodlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4 𝐹 = (LFnl‘𝑊)
2 lduallmod.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2725 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 lduallmod.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 38728 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2731 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2726 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 lduallmod.r . . . 4 𝑅 = (Scalar‘𝑊)
9 lduallmod.o . . . 4 𝑂 = (oppr𝑅)
10 eqid 2725 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
118, 9, 2, 10, 4ldualsca 38734 . . 3 (𝜑 → (Scalar‘𝐷) = 𝑂)
1211eqcomd 2731 . 2 (𝜑𝑂 = (Scalar‘𝐷))
13 lduallmod.s . . 3 · = ( ·𝑠𝐷)
1413a1i 11 . 2 (𝜑· = ( ·𝑠𝐷))
15 lduallmod.k . . . 4 𝐾 = (Base‘𝑅)
169, 15opprbas 20292 . . 3 𝐾 = (Base‘𝑂)
1716a1i 11 . 2 (𝜑𝐾 = (Base‘𝑂))
18 eqid 2725 . . . 4 (+g𝑅) = (+g𝑅)
199, 18oppradd 20294 . . 3 (+g𝑅) = (+g𝑂)
2019a1i 11 . 2 (𝜑 → (+g𝑅) = (+g𝑂))
2111fveq2d 6900 . 2 (𝜑 → (.r‘(Scalar‘𝐷)) = (.r𝑂))
22 eqid 2725 . . . 4 (1r𝑅) = (1r𝑅)
239, 22oppr1 20301 . . 3 (1r𝑅) = (1r𝑂)
2423a1i 11 . 2 (𝜑 → (1r𝑅) = (1r𝑂))
258lmodring 20763 . . 3 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
269opprring 20298 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
274, 25, 263syl 18 . 2 (𝜑𝑂 ∈ Ring)
282, 4ldualgrp 38748 . 2 (𝜑𝐷 ∈ Grp)
2943ad2ant1 1130 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑊 ∈ LMod)
30 simp2 1134 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑥𝐾)
31 simp3 1135 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑦𝐹)
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 38741 . 2 ((𝜑𝑥𝐾𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
33 eqid 2725 . . 3 (+g𝐷) = (+g𝐷)
344adantr 479 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
35 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑥𝐾)
36 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
37 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 38745 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → (𝑥 · (𝑦(+g𝐷)𝑧)) = ((𝑥 · 𝑦)(+g𝐷)(𝑥 · 𝑧)))
394adantr 479 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑊 ∈ LMod)
40 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑥𝐾)
41 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑦𝐾)
42 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑧𝐹)
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 38746 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝐷)(𝑦 · 𝑧)))
44 eqid 2725 . . 3 (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷))
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 38744 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
46 lduallmod.v . . . 4 𝑉 = (Base‘𝑊)
47 lduallmod.t . . . 4 × = (.r𝑅)
484adantr 479 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
4915, 22ringidcl 20214 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
504, 25, 493syl 18 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
5150adantr 479 . . . 4 ((𝜑𝑥𝐹) → (1r𝑅) ∈ 𝐾)
52 simpr 483 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 38739 . . 3 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = (𝑥f × (𝑉 × {(1r𝑅)})))
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 38686 . . 3 ((𝜑𝑥𝐹) → (𝑥f × (𝑉 × {(1r𝑅)})) = 𝑥)
5553, 54eqtrd 2765 . 2 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = 𝑥)
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 20761 1 (𝜑𝐷 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {csn 4630   × cxp 5676  cfv 6549  (class class class)co 7419  f cof 7683  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  1rcur 20133  Ringcrg 20185  opprcoppr 20284  LModclmod 20755  LFnlclfn 38659  LDualcld 38725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-lmod 20757  df-lfl 38660  df-ldual 38726
This theorem is referenced by:  lduallmod  38755
  Copyright terms: Public domain W3C validator