Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Structured version   Visualization version   GIF version

Theorem lduallmodlem 36448
Description: Lemma for lduallmod 36449. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d 𝐷 = (LDual‘𝑊)
lduallmod.w (𝜑𝑊 ∈ LMod)
lduallmod.v 𝑉 = (Base‘𝑊)
lduallmod.p + = ∘f (+g𝑊)
lduallmod.f 𝐹 = (LFnl‘𝑊)
lduallmod.r 𝑅 = (Scalar‘𝑊)
lduallmod.k 𝐾 = (Base‘𝑅)
lduallmod.t × = (.r𝑅)
lduallmod.o 𝑂 = (oppr𝑅)
lduallmod.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
lduallmodlem (𝜑𝐷 ∈ LMod)

Proof of Theorem lduallmodlem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4 𝐹 = (LFnl‘𝑊)
2 lduallmod.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2798 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 lduallmod.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 36422 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2804 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2799 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 lduallmod.r . . . 4 𝑅 = (Scalar‘𝑊)
9 lduallmod.o . . . 4 𝑂 = (oppr𝑅)
10 eqid 2798 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
118, 9, 2, 10, 4ldualsca 36428 . . 3 (𝜑 → (Scalar‘𝐷) = 𝑂)
1211eqcomd 2804 . 2 (𝜑𝑂 = (Scalar‘𝐷))
13 lduallmod.s . . 3 · = ( ·𝑠𝐷)
1413a1i 11 . 2 (𝜑· = ( ·𝑠𝐷))
15 lduallmod.k . . . 4 𝐾 = (Base‘𝑅)
169, 15opprbas 19375 . . 3 𝐾 = (Base‘𝑂)
1716a1i 11 . 2 (𝜑𝐾 = (Base‘𝑂))
18 eqid 2798 . . . 4 (+g𝑅) = (+g𝑅)
199, 18oppradd 19376 . . 3 (+g𝑅) = (+g𝑂)
2019a1i 11 . 2 (𝜑 → (+g𝑅) = (+g𝑂))
2111fveq2d 6649 . 2 (𝜑 → (.r‘(Scalar‘𝐷)) = (.r𝑂))
22 eqid 2798 . . . 4 (1r𝑅) = (1r𝑅)
239, 22oppr1 19380 . . 3 (1r𝑅) = (1r𝑂)
2423a1i 11 . 2 (𝜑 → (1r𝑅) = (1r𝑂))
258lmodring 19635 . . 3 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
269opprring 19377 . . 3 (𝑅 ∈ Ring → 𝑂 ∈ Ring)
274, 25, 263syl 18 . 2 (𝜑𝑂 ∈ Ring)
282, 4ldualgrp 36442 . 2 (𝜑𝐷 ∈ Grp)
2943ad2ant1 1130 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑊 ∈ LMod)
30 simp2 1134 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑥𝐾)
31 simp3 1135 . . 3 ((𝜑𝑥𝐾𝑦𝐹) → 𝑦𝐹)
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 36435 . 2 ((𝜑𝑥𝐾𝑦𝐹) → (𝑥 · 𝑦) ∈ 𝐹)
33 eqid 2798 . . 3 (+g𝐷) = (+g𝐷)
344adantr 484 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
35 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑥𝐾)
36 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
37 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 36439 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐹𝑧𝐹)) → (𝑥 · (𝑦(+g𝐷)𝑧)) = ((𝑥 · 𝑦)(+g𝐷)(𝑥 · 𝑧)))
394adantr 484 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑊 ∈ LMod)
40 simpr1 1191 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑥𝐾)
41 simpr2 1192 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑦𝐾)
42 simpr3 1193 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → 𝑧𝐹)
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 36440 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(+g𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g𝐷)(𝑦 · 𝑧)))
44 eqid 2798 . . 3 (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷))
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 36438 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
46 lduallmod.v . . . 4 𝑉 = (Base‘𝑊)
47 lduallmod.t . . . 4 × = (.r𝑅)
484adantr 484 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
4915, 22ringidcl 19314 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
504, 25, 493syl 18 . . . . 5 (𝜑 → (1r𝑅) ∈ 𝐾)
5150adantr 484 . . . 4 ((𝜑𝑥𝐹) → (1r𝑅) ∈ 𝐾)
52 simpr 488 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 36433 . . 3 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = (𝑥f × (𝑉 × {(1r𝑅)})))
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 36380 . . 3 ((𝜑𝑥𝐹) → (𝑥f × (𝑉 × {(1r𝑅)})) = 𝑥)
5553, 54eqtrd 2833 . 2 ((𝜑𝑥𝐹) → ((1r𝑅) · 𝑥) = 𝑥)
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 19633 1 (𝜑𝐷 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {csn 4525   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  1rcur 19244  Ringcrg 19290  opprcoppr 19368  LModclmod 19627  LFnlclfn 36353  LDualcld 36419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-lmod 19629  df-lfl 36354  df-ldual 36420
This theorem is referenced by:  lduallmod  36449
  Copyright terms: Public domain W3C validator