Step | Hyp | Ref
| Expression |
1 | | lduallmod.f |
. . . 4
β’ πΉ = (LFnlβπ) |
2 | | lduallmod.d |
. . . 4
β’ π· = (LDualβπ) |
3 | | eqid 2731 |
. . . 4
β’
(Baseβπ·) =
(Baseβπ·) |
4 | | lduallmod.w |
. . . 4
β’ (π β π β LMod) |
5 | 1, 2, 3, 4 | ldualvbase 38300 |
. . 3
β’ (π β (Baseβπ·) = πΉ) |
6 | 5 | eqcomd 2737 |
. 2
β’ (π β πΉ = (Baseβπ·)) |
7 | | eqidd 2732 |
. 2
β’ (π β (+gβπ·) = (+gβπ·)) |
8 | | lduallmod.r |
. . . 4
β’ π
= (Scalarβπ) |
9 | | lduallmod.o |
. . . 4
β’ π =
(opprβπ
) |
10 | | eqid 2731 |
. . . 4
β’
(Scalarβπ·) =
(Scalarβπ·) |
11 | 8, 9, 2, 10, 4 | ldualsca 38306 |
. . 3
β’ (π β (Scalarβπ·) = π) |
12 | 11 | eqcomd 2737 |
. 2
β’ (π β π = (Scalarβπ·)) |
13 | | lduallmod.s |
. . 3
β’ Β· = (
Β·π βπ·) |
14 | 13 | a1i 11 |
. 2
β’ (π β Β· = (
Β·π βπ·)) |
15 | | lduallmod.k |
. . . 4
β’ πΎ = (Baseβπ
) |
16 | 9, 15 | opprbas 20233 |
. . 3
β’ πΎ = (Baseβπ) |
17 | 16 | a1i 11 |
. 2
β’ (π β πΎ = (Baseβπ)) |
18 | | eqid 2731 |
. . . 4
β’
(+gβπ
) = (+gβπ
) |
19 | 9, 18 | oppradd 20235 |
. . 3
β’
(+gβπ
) = (+gβπ) |
20 | 19 | a1i 11 |
. 2
β’ (π β (+gβπ
) = (+gβπ)) |
21 | 11 | fveq2d 6896 |
. 2
β’ (π β
(.rβ(Scalarβπ·)) = (.rβπ)) |
22 | | eqid 2731 |
. . . 4
β’
(1rβπ
) = (1rβπ
) |
23 | 9, 22 | oppr1 20242 |
. . 3
β’
(1rβπ
) = (1rβπ) |
24 | 23 | a1i 11 |
. 2
β’ (π β (1rβπ
) = (1rβπ)) |
25 | 8 | lmodring 20623 |
. . 3
β’ (π β LMod β π
β Ring) |
26 | 9 | opprring 20239 |
. . 3
β’ (π
β Ring β π β Ring) |
27 | 4, 25, 26 | 3syl 18 |
. 2
β’ (π β π β Ring) |
28 | 2, 4 | ldualgrp 38320 |
. 2
β’ (π β π· β Grp) |
29 | 4 | 3ad2ant1 1132 |
. . 3
β’ ((π β§ π₯ β πΎ β§ π¦ β πΉ) β π β LMod) |
30 | | simp2 1136 |
. . 3
β’ ((π β§ π₯ β πΎ β§ π¦ β πΉ) β π₯ β πΎ) |
31 | | simp3 1137 |
. . 3
β’ ((π β§ π₯ β πΎ β§ π¦ β πΉ) β π¦ β πΉ) |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 38313 |
. 2
β’ ((π β§ π₯ β πΎ β§ π¦ β πΉ) β (π₯ Β· π¦) β πΉ) |
33 | | eqid 2731 |
. . 3
β’
(+gβπ·) = (+gβπ·) |
34 | 4 | adantr 480 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΉ β§ π§ β πΉ)) β π β LMod) |
35 | | simpr1 1193 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΉ β§ π§ β πΉ)) β π₯ β πΎ) |
36 | | simpr2 1194 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΉ β§ π§ β πΉ)) β π¦ β πΉ) |
37 | | simpr3 1195 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΉ β§ π§ β πΉ)) β π§ β πΉ) |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 38317 |
. 2
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΉ β§ π§ β πΉ)) β (π₯ Β· (π¦(+gβπ·)π§)) = ((π₯ Β· π¦)(+gβπ·)(π₯ Β· π§))) |
39 | 4 | adantr 480 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β π β LMod) |
40 | | simpr1 1193 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β π₯ β πΎ) |
41 | | simpr2 1194 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β π¦ β πΎ) |
42 | | simpr3 1195 |
. . 3
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β π§ β πΉ) |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 38318 |
. 2
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β ((π₯(+gβπ
)π¦) Β· π§) = ((π₯ Β· π§)(+gβπ·)(π¦ Β· π§))) |
44 | | eqid 2731 |
. . 3
β’
(.rβ(Scalarβπ·)) =
(.rβ(Scalarβπ·)) |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 38316 |
. 2
β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΉ)) β ((π₯(.rβ(Scalarβπ·))π¦) Β· π§) = (π₯ Β· (π¦ Β· π§))) |
46 | | lduallmod.v |
. . . 4
β’ π = (Baseβπ) |
47 | | lduallmod.t |
. . . 4
β’ Γ =
(.rβπ
) |
48 | 4 | adantr 480 |
. . . 4
β’ ((π β§ π₯ β πΉ) β π β LMod) |
49 | 15, 22 | ringidcl 20155 |
. . . . . 6
β’ (π
β Ring β
(1rβπ
)
β πΎ) |
50 | 4, 25, 49 | 3syl 18 |
. . . . 5
β’ (π β (1rβπ
) β πΎ) |
51 | 50 | adantr 480 |
. . . 4
β’ ((π β§ π₯ β πΉ) β (1rβπ
) β πΎ) |
52 | | simpr 484 |
. . . 4
β’ ((π β§ π₯ β πΉ) β π₯ β πΉ) |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 38311 |
. . 3
β’ ((π β§ π₯ β πΉ) β ((1rβπ
) Β· π₯) = (π₯ βf Γ (π Γ {(1rβπ
)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 38258 |
. . 3
β’ ((π β§ π₯ β πΉ) β (π₯ βf Γ (π Γ {(1rβπ
)})) = π₯) |
55 | 53, 54 | eqtrd 2771 |
. 2
β’ ((π β§ π₯ β πΉ) β ((1rβπ
) Β· π₯) = π₯) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20621 |
1
β’ (π β π· β LMod) |