![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallmodlem | Structured version Visualization version GIF version |
Description: Lemma for lduallmod 38755. (Contributed by NM, 22-Oct-2014.) |
Ref | Expression |
---|---|
lduallmod.d | ⊢ 𝐷 = (LDual‘𝑊) |
lduallmod.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lduallmod.v | ⊢ 𝑉 = (Base‘𝑊) |
lduallmod.p | ⊢ + = ∘f (+g‘𝑊) |
lduallmod.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lduallmod.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lduallmod.k | ⊢ 𝐾 = (Base‘𝑅) |
lduallmod.t | ⊢ × = (.r‘𝑅) |
lduallmod.o | ⊢ 𝑂 = (oppr‘𝑅) |
lduallmod.s | ⊢ · = ( ·𝑠 ‘𝐷) |
Ref | Expression |
---|---|
lduallmodlem | ⊢ (𝜑 → 𝐷 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lduallmod.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
2 | lduallmod.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
3 | eqid 2725 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
4 | lduallmod.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | 1, 2, 3, 4 | ldualvbase 38728 | . . 3 ⊢ (𝜑 → (Base‘𝐷) = 𝐹) |
6 | 5 | eqcomd 2731 | . 2 ⊢ (𝜑 → 𝐹 = (Base‘𝐷)) |
7 | eqidd 2726 | . 2 ⊢ (𝜑 → (+g‘𝐷) = (+g‘𝐷)) | |
8 | lduallmod.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lduallmod.o | . . . 4 ⊢ 𝑂 = (oppr‘𝑅) | |
10 | eqid 2725 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
11 | 8, 9, 2, 10, 4 | ldualsca 38734 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = 𝑂) |
12 | 11 | eqcomd 2731 | . 2 ⊢ (𝜑 → 𝑂 = (Scalar‘𝐷)) |
13 | lduallmod.s | . . 3 ⊢ · = ( ·𝑠 ‘𝐷) | |
14 | 13 | a1i 11 | . 2 ⊢ (𝜑 → · = ( ·𝑠 ‘𝐷)) |
15 | lduallmod.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
16 | 9, 15 | opprbas 20292 | . . 3 ⊢ 𝐾 = (Base‘𝑂) |
17 | 16 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) |
18 | eqid 2725 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 9, 18 | oppradd 20294 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑂) |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (+g‘𝑅) = (+g‘𝑂)) |
21 | 11 | fveq2d 6900 | . 2 ⊢ (𝜑 → (.r‘(Scalar‘𝐷)) = (.r‘𝑂)) |
22 | eqid 2725 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
23 | 9, 22 | oppr1 20301 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑂) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → (1r‘𝑅) = (1r‘𝑂)) |
25 | 8 | lmodring 20763 | . . 3 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
26 | 9 | opprring 20298 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) |
27 | 4, 25, 26 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑂 ∈ Ring) |
28 | 2, 4 | ldualgrp 38748 | . 2 ⊢ (𝜑 → 𝐷 ∈ Grp) |
29 | 4 | 3ad2ant1 1130 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑊 ∈ LMod) |
30 | simp2 1134 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑥 ∈ 𝐾) | |
31 | simp3 1135 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → 𝑦 ∈ 𝐹) | |
32 | 1, 8, 15, 2, 13, 29, 30, 31 | ldualvscl 38741 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹) → (𝑥 · 𝑦) ∈ 𝐹) |
33 | eqid 2725 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
34 | 4 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
35 | simpr1 1191 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
36 | simpr2 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐹) | |
37 | simpr3 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
38 | 1, 8, 15, 2, 33, 13, 34, 35, 36, 37 | ldualvsdi1 38745 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹)) → (𝑥 · (𝑦(+g‘𝐷)𝑧)) = ((𝑥 · 𝑦)(+g‘𝐷)(𝑥 · 𝑧))) |
39 | 4 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑊 ∈ LMod) |
40 | simpr1 1191 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑥 ∈ 𝐾) | |
41 | simpr2 1192 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑦 ∈ 𝐾) | |
42 | simpr3 1193 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → 𝑧 ∈ 𝐹) | |
43 | 1, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42 | ldualvsdi2 38746 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(+g‘𝑅)𝑦) · 𝑧) = ((𝑥 · 𝑧)(+g‘𝐷)(𝑦 · 𝑧))) |
44 | eqid 2725 | . . 3 ⊢ (.r‘(Scalar‘𝐷)) = (.r‘(Scalar‘𝐷)) | |
45 | 1, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42 | ldualvsass2 38744 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐹)) → ((𝑥(.r‘(Scalar‘𝐷))𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
46 | lduallmod.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
47 | lduallmod.t | . . . 4 ⊢ × = (.r‘𝑅) | |
48 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
49 | 15, 22 | ringidcl 20214 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐾) |
50 | 4, 25, 49 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐾) |
51 | 50 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (1r‘𝑅) ∈ 𝐾) |
52 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
53 | 1, 46, 8, 15, 47, 2, 13, 48, 51, 52 | ldualvs 38739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = (𝑥 ∘f × (𝑉 × {(1r‘𝑅)}))) |
54 | 46, 8, 1, 15, 47, 22, 48, 52 | lfl1sc 38686 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → (𝑥 ∘f × (𝑉 × {(1r‘𝑅)})) = 𝑥) |
55 | 53, 54 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐹) → ((1r‘𝑅) · 𝑥) = 𝑥) |
56 | 6, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55 | islmodd 20761 | 1 ⊢ (𝜑 → 𝐷 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4630 × cxp 5676 ‘cfv 6549 (class class class)co 7419 ∘f cof 7683 Basecbs 17183 +gcplusg 17236 .rcmulr 17237 Scalarcsca 17239 ·𝑠 cvsca 17240 1rcur 20133 Ringcrg 20185 opprcoppr 20284 LModclmod 20755 LFnlclfn 38659 LDualcld 38725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-sbg 18903 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-lmod 20757 df-lfl 38660 df-ldual 38726 |
This theorem is referenced by: lduallmod 38755 |
Copyright terms: Public domain | W3C validator |