MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnolin Structured version   Visualization version   GIF version

Theorem lnolin 29994
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnolin (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))

Proof of Theorem lnolin
Dummy variables 𝑢 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . . 5 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . . 5 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . . 5 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . . 5 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 29993 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))))
98biimp3a 1469 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
109simprd 496 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
11 oveq1 7412 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑅𝑤) = (𝐴𝑅𝑤))
1211fvoveq1d 7427 . . . 4 (𝑢 = 𝐴 → (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)))
13 oveq1 7412 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝑤)))
1413oveq1d 7420 . . . 4 (𝑢 = 𝐴 → ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
1512, 14eqeq12d 2748 . . 3 (𝑢 = 𝐴 → ((𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
16 oveq2 7413 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑅𝑤) = (𝐴𝑅𝐵))
1716fvoveq1d 7427 . . . 4 (𝑤 = 𝐵 → (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)))
18 fveq2 6888 . . . . . 6 (𝑤 = 𝐵 → (𝑇𝑤) = (𝑇𝐵))
1918oveq2d 7421 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝐵)))
2019oveq1d 7420 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)))
2117, 20eqeq12d 2748 . . 3 (𝑤 = 𝐵 → ((𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡))))
22 oveq2 7413 . . . . 5 (𝑡 = 𝐶 → ((𝐴𝑅𝐵)𝐺𝑡) = ((𝐴𝑅𝐵)𝐺𝐶))
2322fveq2d 6892 . . . 4 (𝑡 = 𝐶 → (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)))
24 fveq2 6888 . . . . 5 (𝑡 = 𝐶 → (𝑇𝑡) = (𝑇𝐶))
2524oveq2d 7421 . . . 4 (𝑡 = 𝐶 → ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
2623, 25eqeq12d 2748 . . 3 (𝑡 = 𝐶 → ((𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2715, 21, 26rspc3v 3626 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2810, 27mpan9 507 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  wf 6536  cfv 6540  (class class class)co 7405  cc 11104  NrmCVeccnv 29824   +𝑣 cpv 29825  BaseSetcba 29826   ·𝑠OLD cns 29827   LnOp clno 29980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-lno 29984
This theorem is referenced by:  lno0  29996  lnocoi  29997  lnoadd  29998  lnosub  29999  lnomul  30000
  Copyright terms: Public domain W3C validator