MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnolin Structured version   Visualization version   GIF version

Theorem lnolin 28835
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnolin (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))

Proof of Theorem lnolin
Dummy variables 𝑢 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . . 5 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . . 5 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . . 5 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . . 5 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 28834 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))))
98biimp3a 1471 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
109simprd 499 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
11 oveq1 7220 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑅𝑤) = (𝐴𝑅𝑤))
1211fvoveq1d 7235 . . . 4 (𝑢 = 𝐴 → (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)))
13 oveq1 7220 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝑤)))
1413oveq1d 7228 . . . 4 (𝑢 = 𝐴 → ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
1512, 14eqeq12d 2753 . . 3 (𝑢 = 𝐴 → ((𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
16 oveq2 7221 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑅𝑤) = (𝐴𝑅𝐵))
1716fvoveq1d 7235 . . . 4 (𝑤 = 𝐵 → (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)))
18 fveq2 6717 . . . . . 6 (𝑤 = 𝐵 → (𝑇𝑤) = (𝑇𝐵))
1918oveq2d 7229 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝐵)))
2019oveq1d 7228 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)))
2117, 20eqeq12d 2753 . . 3 (𝑤 = 𝐵 → ((𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡))))
22 oveq2 7221 . . . . 5 (𝑡 = 𝐶 → ((𝐴𝑅𝐵)𝐺𝑡) = ((𝐴𝑅𝐵)𝐺𝐶))
2322fveq2d 6721 . . . 4 (𝑡 = 𝐶 → (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)))
24 fveq2 6717 . . . . 5 (𝑡 = 𝐶 → (𝑇𝑡) = (𝑇𝐶))
2524oveq2d 7229 . . . 4 (𝑡 = 𝐶 → ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
2623, 25eqeq12d 2753 . . 3 (𝑡 = 𝐶 → ((𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2715, 21, 26rspc3v 3550 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2810, 27mpan9 510 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  NrmCVeccnv 28665   +𝑣 cpv 28666  BaseSetcba 28667   ·𝑠OLD cns 28668   LnOp clno 28821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-lno 28825
This theorem is referenced by:  lno0  28837  lnocoi  28838  lnoadd  28839  lnosub  28840  lnomul  28841
  Copyright terms: Public domain W3C validator