MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnolin Structured version   Visualization version   GIF version

Theorem lnolin 30690
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSet‘𝑈)
lnoval.2 𝑌 = (BaseSet‘𝑊)
lnoval.3 𝐺 = ( +𝑣𝑈)
lnoval.4 𝐻 = ( +𝑣𝑊)
lnoval.5 𝑅 = ( ·𝑠OLD𝑈)
lnoval.6 𝑆 = ( ·𝑠OLD𝑊)
lnoval.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnolin (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))

Proof of Theorem lnolin
Dummy variables 𝑢 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 lnoval.2 . . . . 5 𝑌 = (BaseSet‘𝑊)
3 lnoval.3 . . . . 5 𝐺 = ( +𝑣𝑈)
4 lnoval.4 . . . . 5 𝐻 = ( +𝑣𝑊)
5 lnoval.5 . . . . 5 𝑅 = ( ·𝑠OLD𝑈)
6 lnoval.6 . . . . 5 𝑆 = ( ·𝑠OLD𝑊)
7 lnoval.7 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
81, 2, 3, 4, 5, 6, 7islno 30689 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇𝐿 ↔ (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))))
98biimp3a 1471 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇:𝑋𝑌 ∧ ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
109simprd 495 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → ∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
11 oveq1 7397 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑅𝑤) = (𝐴𝑅𝑤))
1211fvoveq1d 7412 . . . 4 (𝑢 = 𝐴 → (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)))
13 oveq1 7397 . . . . 5 (𝑢 = 𝐴 → (𝑢𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝑤)))
1413oveq1d 7405 . . . 4 (𝑢 = 𝐴 → ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)))
1512, 14eqeq12d 2746 . . 3 (𝑢 = 𝐴 → ((𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡))))
16 oveq2 7398 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑅𝑤) = (𝐴𝑅𝐵))
1716fvoveq1d 7412 . . . 4 (𝑤 = 𝐵 → (𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)))
18 fveq2 6861 . . . . . 6 (𝑤 = 𝐵 → (𝑇𝑤) = (𝑇𝐵))
1918oveq2d 7406 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑆(𝑇𝑤)) = (𝐴𝑆(𝑇𝐵)))
2019oveq1d 7405 . . . 4 (𝑤 = 𝐵 → ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)))
2117, 20eqeq12d 2746 . . 3 (𝑤 = 𝐵 → ((𝑇‘((𝐴𝑅𝑤)𝐺𝑡)) = ((𝐴𝑆(𝑇𝑤))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡))))
22 oveq2 7398 . . . . 5 (𝑡 = 𝐶 → ((𝐴𝑅𝐵)𝐺𝑡) = ((𝐴𝑅𝐵)𝐺𝐶))
2322fveq2d 6865 . . . 4 (𝑡 = 𝐶 → (𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)))
24 fveq2 6861 . . . . 5 (𝑡 = 𝐶 → (𝑇𝑡) = (𝑇𝐶))
2524oveq2d 7406 . . . 4 (𝑡 = 𝐶 → ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
2623, 25eqeq12d 2746 . . 3 (𝑡 = 𝐶 → ((𝑇‘((𝐴𝑅𝐵)𝐺𝑡)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝑡)) ↔ (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2715, 21, 26rspc3v 3607 . 2 ((𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋) → (∀𝑢 ∈ ℂ ∀𝑤𝑋𝑡𝑋 (𝑇‘((𝑢𝑅𝑤)𝐺𝑡)) = ((𝑢𝑆(𝑇𝑤))𝐻(𝑇𝑡)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶))))
2810, 27mpan9 506 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴 ∈ ℂ ∧ 𝐵𝑋𝐶𝑋)) → (𝑇‘((𝐴𝑅𝐵)𝐺𝐶)) = ((𝐴𝑆(𝑇𝐵))𝐻(𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523   LnOp clno 30676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-lno 30680
This theorem is referenced by:  lno0  30692  lnocoi  30693  lnoadd  30694  lnosub  30695  lnomul  30696
  Copyright terms: Public domain W3C validator