MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnolin Structured version   Visualization version   GIF version

Theorem lnolin 30512
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
lnoval.2 π‘Œ = (BaseSetβ€˜π‘Š)
lnoval.3 𝐺 = ( +𝑣 β€˜π‘ˆ)
lnoval.4 𝐻 = ( +𝑣 β€˜π‘Š)
lnoval.5 𝑅 = ( ·𝑠OLD β€˜π‘ˆ)
lnoval.6 𝑆 = ( ·𝑠OLD β€˜π‘Š)
lnoval.7 𝐿 = (π‘ˆ LnOp π‘Š)
Assertion
Ref Expression
lnolin (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝐢)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜πΆ)))

Proof of Theorem lnolin
Dummy variables 𝑒 𝑑 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnoval.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
2 lnoval.2 . . . . 5 π‘Œ = (BaseSetβ€˜π‘Š)
3 lnoval.3 . . . . 5 𝐺 = ( +𝑣 β€˜π‘ˆ)
4 lnoval.4 . . . . 5 𝐻 = ( +𝑣 β€˜π‘Š)
5 lnoval.5 . . . . 5 𝑅 = ( ·𝑠OLD β€˜π‘ˆ)
6 lnoval.6 . . . . 5 𝑆 = ( ·𝑠OLD β€˜π‘Š)
7 lnoval.7 . . . . 5 𝐿 = (π‘ˆ LnOp π‘Š)
81, 2, 3, 4, 5, 6, 7islno 30511 . . . 4 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ (𝑇 ∈ 𝐿 ↔ (𝑇:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘’ ∈ β„‚ βˆ€π‘€ ∈ 𝑋 βˆ€π‘‘ ∈ 𝑋 (π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)))))
98biimp3a 1465 . . 3 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ (𝑇:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘’ ∈ β„‚ βˆ€π‘€ ∈ 𝑋 βˆ€π‘‘ ∈ 𝑋 (π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘))))
109simprd 495 . 2 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) β†’ βˆ€π‘’ ∈ β„‚ βˆ€π‘€ ∈ 𝑋 βˆ€π‘‘ ∈ 𝑋 (π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)))
11 oveq1 7411 . . . . 5 (𝑒 = 𝐴 β†’ (𝑒𝑅𝑀) = (𝐴𝑅𝑀))
1211fvoveq1d 7426 . . . 4 (𝑒 = 𝐴 β†’ (π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = (π‘‡β€˜((𝐴𝑅𝑀)𝐺𝑑)))
13 oveq1 7411 . . . . 5 (𝑒 = 𝐴 β†’ (𝑒𝑆(π‘‡β€˜π‘€)) = (𝐴𝑆(π‘‡β€˜π‘€)))
1413oveq1d 7419 . . . 4 (𝑒 = 𝐴 β†’ ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)) = ((𝐴𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)))
1512, 14eqeq12d 2742 . . 3 (𝑒 = 𝐴 β†’ ((π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)) ↔ (π‘‡β€˜((𝐴𝑅𝑀)𝐺𝑑)) = ((𝐴𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘))))
16 oveq2 7412 . . . . 5 (𝑀 = 𝐡 β†’ (𝐴𝑅𝑀) = (𝐴𝑅𝐡))
1716fvoveq1d 7426 . . . 4 (𝑀 = 𝐡 β†’ (π‘‡β€˜((𝐴𝑅𝑀)𝐺𝑑)) = (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝑑)))
18 fveq2 6884 . . . . . 6 (𝑀 = 𝐡 β†’ (π‘‡β€˜π‘€) = (π‘‡β€˜π΅))
1918oveq2d 7420 . . . . 5 (𝑀 = 𝐡 β†’ (𝐴𝑆(π‘‡β€˜π‘€)) = (𝐴𝑆(π‘‡β€˜π΅)))
2019oveq1d 7419 . . . 4 (𝑀 = 𝐡 β†’ ((𝐴𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜π‘‘)))
2117, 20eqeq12d 2742 . . 3 (𝑀 = 𝐡 β†’ ((π‘‡β€˜((𝐴𝑅𝑀)𝐺𝑑)) = ((𝐴𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)) ↔ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝑑)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜π‘‘))))
22 oveq2 7412 . . . . 5 (𝑑 = 𝐢 β†’ ((𝐴𝑅𝐡)𝐺𝑑) = ((𝐴𝑅𝐡)𝐺𝐢))
2322fveq2d 6888 . . . 4 (𝑑 = 𝐢 β†’ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝑑)) = (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝐢)))
24 fveq2 6884 . . . . 5 (𝑑 = 𝐢 β†’ (π‘‡β€˜π‘‘) = (π‘‡β€˜πΆ))
2524oveq2d 7420 . . . 4 (𝑑 = 𝐢 β†’ ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜π‘‘)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜πΆ)))
2623, 25eqeq12d 2742 . . 3 (𝑑 = 𝐢 β†’ ((π‘‡β€˜((𝐴𝑅𝐡)𝐺𝑑)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜π‘‘)) ↔ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝐢)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜πΆ))))
2715, 21, 26rspc3v 3622 . 2 ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋) β†’ (βˆ€π‘’ ∈ β„‚ βˆ€π‘€ ∈ 𝑋 βˆ€π‘‘ ∈ 𝑋 (π‘‡β€˜((𝑒𝑅𝑀)𝐺𝑑)) = ((𝑒𝑆(π‘‡β€˜π‘€))𝐻(π‘‡β€˜π‘‘)) β†’ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝐢)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜πΆ))))
2810, 27mpan9 506 1 (((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ β„‚ ∧ 𝐡 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋)) β†’ (π‘‡β€˜((𝐴𝑅𝐡)𝐺𝐢)) = ((𝐴𝑆(π‘‡β€˜π΅))𝐻(π‘‡β€˜πΆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  βŸΆwf 6532  β€˜cfv 6536  (class class class)co 7404  β„‚cc 11107  NrmCVeccnv 30342   +𝑣 cpv 30343  BaseSetcba 30344   ·𝑠OLD cns 30345   LnOp clno 30498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-lno 30502
This theorem is referenced by:  lno0  30514  lnocoi  30515  lnoadd  30516  lnosub  30517  lnomul  30518
  Copyright terms: Public domain W3C validator