MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn2 Structured version   Visualization version   GIF version

Theorem isopn2 22183
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))

Proof of Theorem isopn2
StepHypRef Expression
1 difss 4066 . . . 4 (𝑋𝑆) ⊆ 𝑋
2 iscld.1 . . . . 5 𝑋 = 𝐽
32iscld2 22179 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
41, 3mpan2 688 . . 3 (𝐽 ∈ Top → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
5 dfss4 4192 . . . . 5 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
65biimpi 215 . . . 4 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76eleq1d 2823 . . 3 (𝑆𝑋 → ((𝑋 ∖ (𝑋𝑆)) ∈ 𝐽𝑆𝐽))
84, 7sylan9bb 510 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
98bicomd 222 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cdif 3884  wss 3887   cuni 4839  cfv 6433  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-cld 22170
This theorem is referenced by:  opncld  22184  iscncl  22420  1stckgen  22705  txkgen  22803  qtoprest  22868  qtopcmap  22870  stoweidlem28  43569
  Copyright terms: Public domain W3C validator