MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn2 Structured version   Visualization version   GIF version

Theorem isopn2 22856
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))

Proof of Theorem isopn2
StepHypRef Expression
1 difss 4131 . . . 4 (𝑋𝑆) ⊆ 𝑋
2 iscld.1 . . . . 5 𝑋 = 𝐽
32iscld2 22852 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
41, 3mpan2 688 . . 3 (𝐽 ∈ Top → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
5 dfss4 4258 . . . . 5 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
65biimpi 215 . . . 4 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76eleq1d 2817 . . 3 (𝑆𝑋 → ((𝑋 ∖ (𝑋𝑆)) ∈ 𝐽𝑆𝐽))
84, 7sylan9bb 509 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
98bicomd 222 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  cdif 3945  wss 3948   cuni 4908  cfv 6543  Topctop 22715  Clsdccld 22840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-top 22716  df-cld 22843
This theorem is referenced by:  opncld  22857  iscncl  23093  1stckgen  23378  txkgen  23476  qtoprest  23541  qtopcmap  23543  stoweidlem28  45205
  Copyright terms: Public domain W3C validator