| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn2 | Structured version Visualization version GIF version | ||
| Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4102 | . . . 4 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 2 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld2 22922 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 5 | dfss4 4235 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
| 6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
| 7 | 6 | eleq1d 2814 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) |
| 8 | 4, 7 | sylan9bb 509 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |
| 9 | 8 | bicomd 223 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-top 22788 df-cld 22913 |
| This theorem is referenced by: opncld 22927 iscncl 23163 1stckgen 23448 txkgen 23546 qtoprest 23611 qtopcmap 23613 stoweidlem28 46033 |
| Copyright terms: Public domain | W3C validator |