| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn2 | Structured version Visualization version GIF version | ||
| Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4086 | . . . 4 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 2 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld2 22941 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 5 | dfss4 4219 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
| 6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
| 7 | 6 | eleq1d 2816 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) |
| 8 | 4, 7 | sylan9bb 509 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |
| 9 | 8 | bicomd 223 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 Clsdccld 22929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22807 df-cld 22932 |
| This theorem is referenced by: opncld 22946 iscncl 23182 1stckgen 23467 txkgen 23565 qtoprest 23630 qtopcmap 23632 stoweidlem28 46065 |
| Copyright terms: Public domain | W3C validator |