MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn2 Structured version   Visualization version   GIF version

Theorem isopn2 22926
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))

Proof of Theorem isopn2
StepHypRef Expression
1 difss 4102 . . . 4 (𝑋𝑆) ⊆ 𝑋
2 iscld.1 . . . . 5 𝑋 = 𝐽
32iscld2 22922 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
41, 3mpan2 691 . . 3 (𝐽 ∈ Top → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
5 dfss4 4235 . . . . 5 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
65biimpi 216 . . . 4 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76eleq1d 2814 . . 3 (𝑆𝑋 → ((𝑋 ∖ (𝑋𝑆)) ∈ 𝐽𝑆𝐽))
84, 7sylan9bb 509 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
98bicomd 223 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  wss 3917   cuni 4874  cfv 6514  Topctop 22787  Clsdccld 22910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-top 22788  df-cld 22913
This theorem is referenced by:  opncld  22927  iscncl  23163  1stckgen  23448  txkgen  23546  qtoprest  23611  qtopcmap  23613  stoweidlem28  46033
  Copyright terms: Public domain W3C validator