![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isopn2 | Structured version Visualization version GIF version |
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
isopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4131 | . . . 4 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
2 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | iscld2 23023 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
4 | 1, 3 | mpan2 689 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
5 | dfss4 4260 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
6 | 5 | biimpi 215 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
7 | 6 | eleq1d 2811 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) |
8 | 4, 7 | sylan9bb 508 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |
9 | 8 | bicomd 222 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 ∪ cuni 4913 ‘cfv 6554 Topctop 22886 Clsdccld 23011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-top 22887 df-cld 23014 |
This theorem is referenced by: opncld 23028 iscncl 23264 1stckgen 23549 txkgen 23647 qtoprest 23712 qtopcmap 23714 stoweidlem28 45649 |
Copyright terms: Public domain | W3C validator |