| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isopn2 | Structured version Visualization version GIF version | ||
| Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| iscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| isopn2 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4136 | . . . 4 ⊢ (𝑋 ∖ 𝑆) ⊆ 𝑋 | |
| 2 | iscld.1 | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | 2 | iscld2 23036 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ (𝑋 ∖ 𝑆) ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 4 | 1, 3 | mpan2 691 | . . 3 ⊢ (𝐽 ∈ Top → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽)) |
| 5 | dfss4 4269 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) | |
| 6 | 5 | biimpi 216 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → (𝑋 ∖ (𝑋 ∖ 𝑆)) = 𝑆) |
| 7 | 6 | eleq1d 2826 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → ((𝑋 ∖ (𝑋 ∖ 𝑆)) ∈ 𝐽 ↔ 𝑆 ∈ 𝐽)) |
| 8 | 4, 7 | sylan9bb 509 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆 ∈ 𝐽)) |
| 9 | 8 | bicomd 223 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ 𝐽 ↔ (𝑋 ∖ 𝑆) ∈ (Clsd‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3948 ⊆ wss 3951 ∪ cuni 4907 ‘cfv 6561 Topctop 22899 Clsdccld 23024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-top 22900 df-cld 23027 |
| This theorem is referenced by: opncld 23041 iscncl 23277 1stckgen 23562 txkgen 23660 qtoprest 23725 qtopcmap 23727 stoweidlem28 46043 |
| Copyright terms: Public domain | W3C validator |