MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isopn2 Structured version   Visualization version   GIF version

Theorem isopn2 22091
Description: A subset of the underlying set of a topology is open iff its complement is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1 𝑋 = 𝐽
Assertion
Ref Expression
isopn2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))

Proof of Theorem isopn2
StepHypRef Expression
1 difss 4062 . . . 4 (𝑋𝑆) ⊆ 𝑋
2 iscld.1 . . . . 5 𝑋 = 𝐽
32iscld2 22087 . . . 4 ((𝐽 ∈ Top ∧ (𝑋𝑆) ⊆ 𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
41, 3mpan2 687 . . 3 (𝐽 ∈ Top → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ (𝑋 ∖ (𝑋𝑆)) ∈ 𝐽))
5 dfss4 4189 . . . . 5 (𝑆𝑋 ↔ (𝑋 ∖ (𝑋𝑆)) = 𝑆)
65biimpi 215 . . . 4 (𝑆𝑋 → (𝑋 ∖ (𝑋𝑆)) = 𝑆)
76eleq1d 2823 . . 3 (𝑆𝑋 → ((𝑋 ∖ (𝑋𝑆)) ∈ 𝐽𝑆𝐽))
84, 7sylan9bb 509 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑋𝑆) ∈ (Clsd‘𝐽) ↔ 𝑆𝐽))
98bicomd 222 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐽 ↔ (𝑋𝑆) ∈ (Clsd‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-top 21951  df-cld 22078
This theorem is referenced by:  opncld  22092  iscncl  22328  1stckgen  22613  txkgen  22711  qtoprest  22776  qtopcmap  22778  stoweidlem28  43459
  Copyright terms: Public domain W3C validator