Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrupgr Structured version   Visualization version   GIF version

Theorem isubgrupgr 47740
Description: An induced subgraph of a pseudograph is a pseudograph. (Contributed by AV, 14-May-2025.)
Hypothesis
Ref Expression
isubgrupgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrupgr ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph)

Proof of Theorem isubgrupgr
StepHypRef Expression
1 upgruhgr 29137 . . 3 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 isubgrupgr.v . . . 4 𝑉 = (Vtx‘𝐺)
32isubgrsubgr 47739 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
41, 3sylan 579 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
5 subupgr 29322 . 2 ((𝐺 ∈ UPGraph ∧ (𝐺 ISubGr 𝑆) SubGraph 𝐺) → (𝐺 ISubGr 𝑆) ∈ UPGraph)
64, 5syldan 590 1 ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  UHGraphcuhgr 29091  UPGraphcupgr 29115   SubGraph csubgr 29302   ISubGr cisubgr 47732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-subgr 29303  df-isubgr 47733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator