Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrupgr Structured version   Visualization version   GIF version

Theorem isubgrupgr 47843
Description: An induced subgraph of a pseudograph is a pseudograph. (Contributed by AV, 14-May-2025.)
Hypothesis
Ref Expression
isubgrupgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrupgr ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph)

Proof of Theorem isubgrupgr
StepHypRef Expression
1 upgruhgr 29005 . . 3 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 isubgrupgr.v . . . 4 𝑉 = (Vtx‘𝐺)
32isubgrsubgr 47842 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
41, 3sylan 580 . 2 ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
5 subupgr 29190 . 2 ((𝐺 ∈ UPGraph ∧ (𝐺 ISubGr 𝑆) SubGraph 𝐺) → (𝐺 ISubGr 𝑆) ∈ UPGraph)
64, 5syldan 591 1 ((𝐺 ∈ UPGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  Vtxcvtx 28899  UHGraphcuhgr 28959  UPGraphcupgr 28983   SubGraph csubgr 29170   ISubGr cisubgr 47833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-vtx 28901  df-iedg 28902  df-edg 28951  df-uhgr 28961  df-upgr 28985  df-subgr 29171  df-isubgr 47834
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator