Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrsubgr Structured version   Visualization version   GIF version

Theorem isubgrsubgr 47739
Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrsubgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)

Proof of Theorem isubgrsubgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21isubgrvtx 47737 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
3 simpr 484 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝑆𝑉)
42, 3eqsstrd 4047 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉)
5 eqid 2740 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
61, 5isubgriedg 47735 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
7 resss 6031 . . 3 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺)
86, 7eqsstrdi 4063 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))
9 simpl 482 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝐺 ∈ UHGraph)
105uhgrfun 29101 . . . 4 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
1110adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → Fun (iEdg‘𝐺))
121isubgruhgr 47738 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
13 eqid 2740 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
14 eqid 2740 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
1513, 1, 14, 5uhgrissubgr 29310 . . 3 ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))))
169, 11, 12, 15syl3anc 1371 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))))
174, 8, 16mpbir2and 712 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976   class class class wbr 5166  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032  UHGraphcuhgr 29091   SubGraph csubgr 29302   ISubGr cisubgr 47732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-vtx 29033  df-iedg 29034  df-edg 29083  df-uhgr 29093  df-subgr 29303  df-isubgr 47733
This theorem is referenced by:  isubgrupgr  47740  isubgrumgr  47741  isubgrusgr  47742
  Copyright terms: Public domain W3C validator