| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrsubgr | Structured version Visualization version GIF version | ||
| Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
| Ref | Expression |
|---|---|
| isubgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrsubgr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isubgrvtx 47992 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 4 | 2, 3 | eqsstrd 3965 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉) |
| 5 | eqid 2733 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 1, 5 | isubgriedg 47988 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | resss 5954 | . . 3 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 8 | 6, 7 | eqsstrdi 3975 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝐺 ∈ UHGraph) | |
| 10 | 5 | uhgrfun 29046 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → Fun (iEdg‘𝐺)) |
| 12 | 1 | isubgruhgr 47993 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) |
| 13 | eqid 2733 | . . . 4 ⊢ (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆)) | |
| 14 | eqid 2733 | . . . 4 ⊢ (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆)) | |
| 15 | 13, 1, 14, 5 | uhgrissubgr 29255 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 16 | 9, 11, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 17 | 4, 8, 16 | mpbir2and 713 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 Fun wfun 6480 ‘cfv 6486 (class class class)co 7352 Vtxcvtx 28976 iEdgciedg 28977 UHGraphcuhgr 29036 SubGraph csubgr 29247 ISubGr cisubgr 47985 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-subgr 29248 df-isubgr 47986 |
| This theorem is referenced by: isubgrupgr 47995 isubgrumgr 47996 isubgrusgr 47997 |
| Copyright terms: Public domain | W3C validator |