| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrsubgr | Structured version Visualization version GIF version | ||
| Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
| Ref | Expression |
|---|---|
| isubgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrsubgr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isubgrvtx 47852 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 4 | 2, 3 | eqsstrd 3972 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉) |
| 5 | eqid 2729 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 1, 5 | isubgriedg 47848 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | resss 5956 | . . 3 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 8 | 6, 7 | eqsstrdi 3982 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝐺 ∈ UHGraph) | |
| 10 | 5 | uhgrfun 29029 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → Fun (iEdg‘𝐺)) |
| 12 | 1 | isubgruhgr 47853 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) |
| 13 | eqid 2729 | . . . 4 ⊢ (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆)) | |
| 14 | eqid 2729 | . . . 4 ⊢ (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆)) | |
| 15 | 13, 1, 14, 5 | uhgrissubgr 29238 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 16 | 9, 11, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 17 | 4, 8, 16 | mpbir2and 713 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 class class class wbr 5095 dom cdm 5623 ↾ cres 5625 Fun wfun 6480 ‘cfv 6486 (class class class)co 7353 Vtxcvtx 28959 iEdgciedg 28960 UHGraphcuhgr 29019 SubGraph csubgr 29230 ISubGr cisubgr 47845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-vtx 28961 df-iedg 28962 df-edg 29011 df-uhgr 29021 df-subgr 29231 df-isubgr 47846 |
| This theorem is referenced by: isubgrupgr 47855 isubgrumgr 47856 isubgrusgr 47857 |
| Copyright terms: Public domain | W3C validator |