| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrsubgr | Structured version Visualization version GIF version | ||
| Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
| Ref | Expression |
|---|---|
| isubgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrsubgr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isubgrvtx 47871 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 4 | 2, 3 | eqsstrd 3984 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉) |
| 5 | eqid 2730 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 1, 5 | isubgriedg 47867 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | resss 5975 | . . 3 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 8 | 6, 7 | eqsstrdi 3994 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝐺 ∈ UHGraph) | |
| 10 | 5 | uhgrfun 29000 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → Fun (iEdg‘𝐺)) |
| 12 | 1 | isubgruhgr 47872 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) |
| 13 | eqid 2730 | . . . 4 ⊢ (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆)) | |
| 14 | eqid 2730 | . . . 4 ⊢ (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆)) | |
| 15 | 13, 1, 14, 5 | uhgrissubgr 29209 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 16 | 9, 11, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 17 | 4, 8, 16 | mpbir2and 713 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3408 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 Vtxcvtx 28930 iEdgciedg 28931 UHGraphcuhgr 28990 SubGraph csubgr 29201 ISubGr cisubgr 47864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-subgr 29202 df-isubgr 47865 |
| This theorem is referenced by: isubgrupgr 47874 isubgrumgr 47875 isubgrusgr 47876 |
| Copyright terms: Public domain | W3C validator |