Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgrsubgr Structured version   Visualization version   GIF version

Theorem isubgrsubgr 47854
Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.)
Hypothesis
Ref Expression
isubgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isubgrsubgr ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)

Proof of Theorem isubgrsubgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isubgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
21isubgrvtx 47852 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆)
3 simpr 484 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝑆𝑉)
42, 3eqsstrd 3972 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉)
5 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
61, 5isubgriedg 47848 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}))
7 resss 5956 . . 3 ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺)
86, 7eqsstrdi 3982 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))
9 simpl 482 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → 𝐺 ∈ UHGraph)
105uhgrfun 29029 . . . 4 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
1110adantr 480 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → Fun (iEdg‘𝐺))
121isubgruhgr 47853 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph)
13 eqid 2729 . . . 4 (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆))
14 eqid 2729 . . . 4 (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆))
1513, 1, 14, 5uhgrissubgr 29238 . . 3 ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))))
169, 11, 12, 15syl3anc 1373 . 2 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺))))
174, 8, 16mpbir2and 713 1 ((𝐺 ∈ UHGraph ∧ 𝑆𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3396  wss 3905   class class class wbr 5095  dom cdm 5623  cres 5625  Fun wfun 6480  cfv 6486  (class class class)co 7353  Vtxcvtx 28959  iEdgciedg 28960  UHGraphcuhgr 29019   SubGraph csubgr 29230   ISubGr cisubgr 47845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-vtx 28961  df-iedg 28962  df-edg 29011  df-uhgr 29021  df-subgr 29231  df-isubgr 47846
This theorem is referenced by:  isubgrupgr  47855  isubgrumgr  47856  isubgrusgr  47857
  Copyright terms: Public domain W3C validator