| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isubgrsubgr | Structured version Visualization version GIF version | ||
| Description: An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
| Ref | Expression |
|---|---|
| isubgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| isubgrsubgr | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | isubgrvtx 47847 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) |
| 3 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝑆 ⊆ 𝑉) | |
| 4 | 2, 3 | eqsstrd 3998 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉) |
| 5 | eqid 2736 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 6 | 1, 5 | isubgriedg 47843 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆})) |
| 7 | resss 5993 | . . 3 ⊢ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑆}) ⊆ (iEdg‘𝐺) | |
| 8 | 6, 7 | eqsstrdi 4008 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)) |
| 9 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → 𝐺 ∈ UHGraph) | |
| 10 | 5 | uhgrfun 29050 | . . . 4 ⊢ (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺)) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → Fun (iEdg‘𝐺)) |
| 12 | 1 | isubgruhgr 47848 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) |
| 13 | eqid 2736 | . . . 4 ⊢ (Vtx‘(𝐺 ISubGr 𝑆)) = (Vtx‘(𝐺 ISubGr 𝑆)) | |
| 14 | eqid 2736 | . . . 4 ⊢ (iEdg‘(𝐺 ISubGr 𝑆)) = (iEdg‘(𝐺 ISubGr 𝑆)) | |
| 15 | 13, 1, 14, 5 | uhgrissubgr 29259 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ Fun (iEdg‘𝐺) ∧ (𝐺 ISubGr 𝑆) ∈ UHGraph) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 16 | 9, 11, 12, 15 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → ((𝐺 ISubGr 𝑆) SubGraph 𝐺 ↔ ((Vtx‘(𝐺 ISubGr 𝑆)) ⊆ 𝑉 ∧ (iEdg‘(𝐺 ISubGr 𝑆)) ⊆ (iEdg‘𝐺)))) |
| 17 | 4, 8, 16 | mpbir2and 713 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Fun wfun 6530 ‘cfv 6536 (class class class)co 7410 Vtxcvtx 28980 iEdgciedg 28981 UHGraphcuhgr 29040 SubGraph csubgr 29251 ISubGr cisubgr 47840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-vtx 28982 df-iedg 28983 df-edg 29032 df-uhgr 29042 df-subgr 29252 df-isubgr 47841 |
| This theorem is referenced by: isubgrupgr 47850 isubgrumgr 47851 isubgrusgr 47852 |
| Copyright terms: Public domain | W3C validator |