| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14480 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14415 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7403 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6672 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3126 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕ0cn0 12442 ..^cfzo 13615 ♯chash 14295 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 |
| This theorem is referenced by: wrdfd 14484 iswrdb 14485 wrddm 14486 wrdsymbcl 14492 wrdfn 14493 wrdffz 14500 0wrd0 14505 wrdsymb 14507 wrdnval 14510 wrdred1 14525 wrdred1hash 14526 ccatcl 14539 ccatalpha 14558 s1dm 14573 swrdcl 14610 swrdf 14615 swrdwrdsymb 14627 pfxres 14644 cats1un 14686 revcl 14726 revlen 14727 revrev 14732 repsdf2 14743 cshwf 14765 cshinj 14776 wrdco 14797 lenco 14798 revco 14800 ccatco 14801 lswco 14805 s2dm 14856 wwlktovf 14922 s7f1o 14932 ofccat 14935 gsumwsubmcl 18764 gsumsgrpccat 18767 gsumwmhm 18772 frmdss2 18790 symgtrinv 19402 psgnunilem5 19424 psgnunilem2 19425 psgnunilem3 19426 efginvrel1 19658 efgsf 19659 efgsrel 19664 efgs1b 19666 efgredlemf 19671 efgredlemd 19674 efgredlemc 19675 efgredlem 19677 frgpup3lem 19707 pgpfaclem1 20013 ablfaclem2 20018 ablfaclem3 20019 ablfac2 20021 dchrptlem1 27175 dchrptlem2 27176 trgcgrg 28442 tgcgr4 28458 wrdupgr 29012 wrdumgr 29024 vdegp1ai 29464 vdegp1bi 29465 wlkres 29598 wlkp1 29609 wlkdlem1 29610 trlf1 29626 trlreslem 29627 upgrwlkdvdelem 29666 pthdlem1 29696 pthdlem2lem 29697 uspgrn2crct 29738 wlkiswwlks2lem3 29801 wlkiswwlksupgr2 29807 clwlkclwwlklem2a 29927 clwlkclwwlklem2 29929 1wlkdlem1 30066 wlk2v2e 30086 eucrctshift 30172 konigsbergssiedgw 30179 wrdres 32856 pfxf1 32863 s3f1 32868 ccatf1 32870 swrdrn3 32877 cycpmcl 33073 tocyc01 33075 cycpmco2rn 33082 cycpmrn 33100 tocyccntz 33101 cycpmconjslem2 33112 unitprodclb 33360 sseqf 34383 fiblem 34389 ofcccat 34534 signstcl 34556 signstf 34557 signstfvn 34560 signsvtn0 34561 signstres 34566 signsvtp 34574 signsvtn 34575 signsvfpn 34576 signsvfnn 34577 signshf 34579 revwlk 35112 mvrsfpw 35493 frlmfzowrdb 42492 amgm2d 44187 amgm3d 44188 amgm4d 44189 lswn0 47445 upgrimwlklem1 47897 upgrimwlklem2 47898 upgrimwlklem3 47899 upgrimtrlslem1 47904 upgrimtrlslem2 47905 gpgprismgr4cycllem9 48093 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |