| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14531 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14466 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7419 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6691 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3133 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 0cc0 11127 ℕ0cn0 12499 ..^cfzo 13669 ♯chash 14346 Word cword 14529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-hash 14347 df-word 14530 |
| This theorem is referenced by: wrdfd 14535 iswrdb 14536 wrddm 14537 wrdsymbcl 14543 wrdfn 14544 wrdffz 14551 0wrd0 14556 wrdsymb 14558 wrdnval 14561 wrdred1 14576 wrdred1hash 14577 ccatcl 14590 ccatalpha 14609 s1dm 14624 swrdcl 14661 swrdf 14666 swrdwrdsymb 14678 pfxres 14695 cats1un 14737 revcl 14777 revlen 14778 revrev 14783 repsdf2 14794 cshwf 14816 cshinj 14827 wrdco 14848 lenco 14849 revco 14851 ccatco 14852 lswco 14856 s2dm 14907 wwlktovf 14973 s7f1o 14983 ofccat 14986 gsumwsubmcl 18813 gsumsgrpccat 18816 gsumwmhm 18821 frmdss2 18839 symgtrinv 19451 psgnunilem5 19473 psgnunilem2 19474 psgnunilem3 19475 efginvrel1 19707 efgsf 19708 efgsrel 19713 efgs1b 19715 efgredlemf 19720 efgredlemd 19723 efgredlemc 19724 efgredlem 19726 frgpup3lem 19756 pgpfaclem1 20062 ablfaclem2 20067 ablfaclem3 20068 ablfac2 20070 dchrptlem1 27225 dchrptlem2 27226 trgcgrg 28440 tgcgr4 28456 wrdupgr 29010 wrdumgr 29022 vdegp1ai 29462 vdegp1bi 29463 wlkres 29596 wlkp1 29607 wlkdlem1 29608 trlf1 29624 trlreslem 29625 upgrwlkdvdelem 29664 pthdlem1 29694 pthdlem2lem 29695 uspgrn2crct 29736 wlkiswwlks2lem3 29799 wlkiswwlksupgr2 29805 clwlkclwwlklem2a 29925 clwlkclwwlklem2 29927 1wlkdlem1 30064 wlk2v2e 30084 eucrctshift 30170 konigsbergssiedgw 30177 wrdres 32856 pfxf1 32863 s3f1 32868 ccatf1 32870 swrdrn3 32877 cycpmcl 33073 tocyc01 33075 cycpmco2rn 33082 cycpmrn 33100 tocyccntz 33101 cycpmconjslem2 33112 unitprodclb 33350 sseqf 34370 fiblem 34376 ofcccat 34521 signstcl 34543 signstf 34544 signstfvn 34547 signsvtn0 34548 signstres 34553 signsvtp 34561 signsvtn 34562 signsvfpn 34563 signsvfnn 34564 signshf 34566 revwlk 35093 mvrsfpw 35474 frlmfzowrdb 42474 amgm2d 44169 amgm3d 44170 amgm4d 44171 lswn0 47406 upgrimwlklem1 47858 upgrimwlklem2 47859 upgrimwlklem3 47860 upgrimtrlslem1 47865 upgrimtrlslem2 47866 gpgprismgr4cycllem9 48050 amgmw2d 49563 |
| Copyright terms: Public domain | W3C validator |