| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14426 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14361 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7370 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6642 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3126 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 0cc0 11015 ℕ0cn0 12390 ..^cfzo 13558 ♯chash 14241 Word cword 14424 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 |
| This theorem is referenced by: wrdfd 14430 iswrdb 14431 wrddm 14432 wrdsymbcl 14438 wrdfn 14439 wrdffz 14446 0wrd0 14451 wrdsymb 14453 wrdnval 14456 wrdred1 14471 wrdred1hash 14472 ccatcl 14485 ccatalpha 14505 s1dm 14520 swrdcl 14557 swrdf 14562 swrdwrdsymb 14574 pfxres 14591 cats1un 14632 revcl 14672 revlen 14673 revrev 14678 repsdf2 14689 cshwf 14711 cshinj 14722 wrdco 14742 lenco 14743 revco 14745 ccatco 14746 lswco 14750 s2dm 14801 wwlktovf 14867 s7f1o 14877 ofccat 14880 chnf 18539 gsumwsubmcl 18749 gsumsgrpccat 18752 gsumwmhm 18757 frmdss2 18775 symgtrinv 19388 psgnunilem5 19410 psgnunilem2 19411 psgnunilem3 19412 efginvrel1 19644 efgsf 19645 efgsrel 19650 efgs1b 19652 efgredlemf 19657 efgredlemd 19660 efgredlemc 19661 efgredlem 19663 frgpup3lem 19693 pgpfaclem1 19999 ablfaclem2 20004 ablfaclem3 20005 ablfac2 20007 dchrptlem1 27205 dchrptlem2 27206 trgcgrg 28496 tgcgr4 28512 wrdupgr 29067 wrdumgr 29079 vdegp1ai 29519 vdegp1bi 29520 wlkres 29651 wlkp1 29662 wlkdlem1 29663 trlf1 29679 trlreslem 29680 upgrwlkdvdelem 29718 pthdlem1 29748 pthdlem2lem 29749 uspgrn2crct 29790 wlkiswwlks2lem3 29853 wlkiswwlksupgr2 29859 clwlkclwwlklem2a 29982 clwlkclwwlklem2 29984 1wlkdlem1 30121 wlk2v2e 30141 eucrctshift 30227 konigsbergssiedgw 30234 wrdres 32925 pfxf1 32932 s3f1 32937 ccatf1 32939 swrdrn3 32945 cycpmcl 33094 tocyc01 33096 cycpmco2rn 33103 cycpmrn 33121 tocyccntz 33122 cycpmconjslem2 33133 unitprodclb 33363 sseqf 34428 fiblem 34434 ofcccat 34579 signstcl 34601 signstf 34602 signstfvn 34605 signsvtn0 34606 signstres 34611 signsvtp 34619 signsvtn 34620 signsvfpn 34621 signsvfnn 34622 signshf 34624 revwlk 35192 mvrsfpw 35573 frlmfzowrdb 42625 amgm2d 44318 amgm3d 44319 amgm4d 44320 chnsubseqword 47003 chnsubseqwl 47004 chnsubseq 47005 lswn0 47571 upgrimwlklem1 48024 upgrimwlklem2 48025 upgrimwlklem3 48026 upgrimtrlslem1 48031 upgrimtrlslem2 48032 gpgprismgr4cycllem9 48230 amgmw2d 49932 |
| Copyright terms: Public domain | W3C validator |