| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14487 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14422 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7406 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6675 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3127 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3054 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℕ0cn0 12449 ..^cfzo 13622 ♯chash 14302 Word cword 14485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 |
| This theorem is referenced by: wrdfd 14491 iswrdb 14492 wrddm 14493 wrdsymbcl 14499 wrdfn 14500 wrdffz 14507 0wrd0 14512 wrdsymb 14514 wrdnval 14517 wrdred1 14532 wrdred1hash 14533 ccatcl 14546 ccatalpha 14565 s1dm 14580 swrdcl 14617 swrdf 14622 swrdwrdsymb 14634 pfxres 14651 cats1un 14693 revcl 14733 revlen 14734 revrev 14739 repsdf2 14750 cshwf 14772 cshinj 14783 wrdco 14804 lenco 14805 revco 14807 ccatco 14808 lswco 14812 s2dm 14863 wwlktovf 14929 s7f1o 14939 ofccat 14942 gsumwsubmcl 18771 gsumsgrpccat 18774 gsumwmhm 18779 frmdss2 18797 symgtrinv 19409 psgnunilem5 19431 psgnunilem2 19432 psgnunilem3 19433 efginvrel1 19665 efgsf 19666 efgsrel 19671 efgs1b 19673 efgredlemf 19678 efgredlemd 19681 efgredlemc 19682 efgredlem 19684 frgpup3lem 19714 pgpfaclem1 20020 ablfaclem2 20025 ablfaclem3 20026 ablfac2 20028 dchrptlem1 27182 dchrptlem2 27183 trgcgrg 28449 tgcgr4 28465 wrdupgr 29019 wrdumgr 29031 vdegp1ai 29471 vdegp1bi 29472 wlkres 29605 wlkp1 29616 wlkdlem1 29617 trlf1 29633 trlreslem 29634 upgrwlkdvdelem 29673 pthdlem1 29703 pthdlem2lem 29704 uspgrn2crct 29745 wlkiswwlks2lem3 29808 wlkiswwlksupgr2 29814 clwlkclwwlklem2a 29934 clwlkclwwlklem2 29936 1wlkdlem1 30073 wlk2v2e 30093 eucrctshift 30179 konigsbergssiedgw 30186 wrdres 32863 pfxf1 32870 s3f1 32875 ccatf1 32877 swrdrn3 32884 cycpmcl 33080 tocyc01 33082 cycpmco2rn 33089 cycpmrn 33107 tocyccntz 33108 cycpmconjslem2 33119 unitprodclb 33367 sseqf 34390 fiblem 34396 ofcccat 34541 signstcl 34563 signstf 34564 signstfvn 34567 signsvtn0 34568 signstres 34573 signsvtp 34581 signsvtn 34582 signsvfpn 34583 signsvfnn 34584 signshf 34586 revwlk 35119 mvrsfpw 35500 frlmfzowrdb 42499 amgm2d 44194 amgm3d 44195 amgm4d 44196 lswn0 47449 upgrimwlklem1 47901 upgrimwlklem2 47902 upgrimwlklem3 47903 upgrimtrlslem1 47908 upgrimtrlslem2 47909 gpgprismgr4cycllem9 48097 amgmw2d 49797 |
| Copyright terms: Public domain | W3C validator |