| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14440 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14375 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7369 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6640 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3122 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∃wrex 3053 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℕ0cn0 12402 ..^cfzo 13575 ♯chash 14255 Word cword 14438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 |
| This theorem is referenced by: wrdfd 14444 iswrdb 14445 wrddm 14446 wrdsymbcl 14452 wrdfn 14453 wrdffz 14460 0wrd0 14465 wrdsymb 14467 wrdnval 14470 wrdred1 14485 wrdred1hash 14486 ccatcl 14499 ccatalpha 14518 s1dm 14533 swrdcl 14570 swrdf 14575 swrdwrdsymb 14587 pfxres 14604 cats1un 14645 revcl 14685 revlen 14686 revrev 14691 repsdf2 14702 cshwf 14724 cshinj 14735 wrdco 14756 lenco 14757 revco 14759 ccatco 14760 lswco 14764 s2dm 14815 wwlktovf 14881 s7f1o 14891 ofccat 14894 gsumwsubmcl 18729 gsumsgrpccat 18732 gsumwmhm 18737 frmdss2 18755 symgtrinv 19369 psgnunilem5 19391 psgnunilem2 19392 psgnunilem3 19393 efginvrel1 19625 efgsf 19626 efgsrel 19631 efgs1b 19633 efgredlemf 19638 efgredlemd 19641 efgredlemc 19642 efgredlem 19644 frgpup3lem 19674 pgpfaclem1 19980 ablfaclem2 19985 ablfaclem3 19986 ablfac2 19988 dchrptlem1 27191 dchrptlem2 27192 trgcgrg 28478 tgcgr4 28494 wrdupgr 29048 wrdumgr 29060 vdegp1ai 29500 vdegp1bi 29501 wlkres 29632 wlkp1 29643 wlkdlem1 29644 trlf1 29660 trlreslem 29661 upgrwlkdvdelem 29699 pthdlem1 29729 pthdlem2lem 29730 uspgrn2crct 29771 wlkiswwlks2lem3 29834 wlkiswwlksupgr2 29840 clwlkclwwlklem2a 29960 clwlkclwwlklem2 29962 1wlkdlem1 30099 wlk2v2e 30119 eucrctshift 30205 konigsbergssiedgw 30212 wrdres 32889 pfxf1 32896 s3f1 32901 ccatf1 32903 swrdrn3 32910 cycpmcl 33071 tocyc01 33073 cycpmco2rn 33080 cycpmrn 33098 tocyccntz 33099 cycpmconjslem2 33110 unitprodclb 33339 sseqf 34362 fiblem 34368 ofcccat 34513 signstcl 34535 signstf 34536 signstfvn 34539 signsvtn0 34540 signstres 34545 signsvtp 34553 signsvtn 34554 signsvfpn 34555 signsvfnn 34556 signshf 34558 revwlk 35100 mvrsfpw 35481 frlmfzowrdb 42480 amgm2d 44174 amgm3d 44175 amgm4d 44176 lswn0 47432 upgrimwlklem1 47885 upgrimwlklem2 47886 upgrimwlklem3 47887 upgrimtrlslem1 47892 upgrimtrlslem2 47893 gpgprismgr4cycllem9 48091 amgmw2d 49793 |
| Copyright terms: Public domain | W3C validator |