| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14422 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14357 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7362 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6635 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3125 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 ♯chash 14237 Word cword 14420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 |
| This theorem is referenced by: wrdfd 14426 iswrdb 14427 wrddm 14428 wrdsymbcl 14434 wrdfn 14435 wrdffz 14442 0wrd0 14447 wrdsymb 14449 wrdnval 14452 wrdred1 14467 wrdred1hash 14468 ccatcl 14481 ccatalpha 14501 s1dm 14516 swrdcl 14553 swrdf 14558 swrdwrdsymb 14570 pfxres 14587 cats1un 14628 revcl 14668 revlen 14669 revrev 14674 repsdf2 14685 cshwf 14707 cshinj 14718 wrdco 14738 lenco 14739 revco 14741 ccatco 14742 lswco 14746 s2dm 14797 wwlktovf 14863 s7f1o 14873 ofccat 14876 chnf 18535 gsumwsubmcl 18745 gsumsgrpccat 18748 gsumwmhm 18753 frmdss2 18771 symgtrinv 19385 psgnunilem5 19407 psgnunilem2 19408 psgnunilem3 19409 efginvrel1 19641 efgsf 19642 efgsrel 19647 efgs1b 19649 efgredlemf 19654 efgredlemd 19657 efgredlemc 19658 efgredlem 19660 frgpup3lem 19690 pgpfaclem1 19996 ablfaclem2 20001 ablfaclem3 20002 ablfac2 20004 dchrptlem1 27203 dchrptlem2 27204 trgcgrg 28494 tgcgr4 28510 wrdupgr 29064 wrdumgr 29076 vdegp1ai 29516 vdegp1bi 29517 wlkres 29648 wlkp1 29659 wlkdlem1 29660 trlf1 29676 trlreslem 29677 upgrwlkdvdelem 29715 pthdlem1 29745 pthdlem2lem 29746 uspgrn2crct 29787 wlkiswwlks2lem3 29850 wlkiswwlksupgr2 29856 clwlkclwwlklem2a 29976 clwlkclwwlklem2 29978 1wlkdlem1 30115 wlk2v2e 30135 eucrctshift 30221 konigsbergssiedgw 30228 wrdres 32914 pfxf1 32921 s3f1 32926 ccatf1 32928 swrdrn3 32934 cycpmcl 33083 tocyc01 33085 cycpmco2rn 33092 cycpmrn 33110 tocyccntz 33111 cycpmconjslem2 33122 unitprodclb 33352 sseqf 34403 fiblem 34409 ofcccat 34554 signstcl 34576 signstf 34577 signstfvn 34580 signsvtn0 34581 signstres 34586 signsvtp 34594 signsvtn 34595 signsvfpn 34596 signsvfnn 34597 signshf 34599 revwlk 35167 mvrsfpw 35548 frlmfzowrdb 42543 amgm2d 44237 amgm3d 44238 amgm4d 44239 lswn0 47481 upgrimwlklem1 47934 upgrimwlklem2 47935 upgrimwlklem3 47936 upgrimtrlslem1 47941 upgrimtrlslem2 47942 gpgprismgr4cycllem9 48140 amgmw2d 49842 |
| Copyright terms: Public domain | W3C validator |