![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version |
Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswrd 14550 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
3 | fnfzo0hash 14485 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
4 | 3 | oveq2d 7446 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
5 | 4 | feq2d 6722 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
7 | 6 | rexlimiva 3144 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3067 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 0cc0 11152 ℕ0cn0 12523 ..^cfzo 13690 ♯chash 14365 Word cword 14548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-hash 14366 df-word 14549 |
This theorem is referenced by: iswrdb 14554 wrddm 14555 wrdsymbcl 14561 wrdfn 14562 wrdffz 14569 0wrd0 14574 wrdsymb 14576 wrdnval 14579 wrdred1 14594 wrdred1hash 14595 ccatcl 14608 ccatalpha 14627 s1dm 14642 swrdcl 14679 swrdf 14684 swrdwrdsymb 14696 pfxres 14713 cats1un 14755 revcl 14795 revlen 14796 revrev 14801 repsdf2 14812 cshwf 14834 cshinj 14845 wrdco 14866 lenco 14867 revco 14869 ccatco 14870 lswco 14874 s2dm 14925 wwlktovf 14991 s7f1o 15001 ofccat 15004 gsumwsubmcl 18862 gsumsgrpccat 18865 gsumwmhm 18870 frmdss2 18888 symgtrinv 19504 psgnunilem5 19526 psgnunilem2 19527 psgnunilem3 19528 efginvrel1 19760 efgsf 19761 efgsrel 19766 efgs1b 19768 efgredlemf 19773 efgredlemd 19776 efgredlemc 19777 efgredlem 19779 frgpup3lem 19809 pgpfaclem1 20115 ablfaclem2 20120 ablfaclem3 20121 ablfac2 20123 dchrptlem1 27322 dchrptlem2 27323 trgcgrg 28537 tgcgr4 28553 wrdupgr 29116 wrdumgr 29128 vdegp1ai 29568 vdegp1bi 29569 wlkres 29702 wlkp1 29713 wlkdlem1 29714 trlf1 29730 trlreslem 29731 upgrwlkdvdelem 29768 pthdlem1 29798 pthdlem2lem 29799 uspgrn2crct 29837 wlkiswwlks2lem3 29900 wlkiswwlksupgr2 29906 clwlkclwwlklem2a 30026 clwlkclwwlklem2 30028 1wlkdlem1 30165 wlk2v2e 30185 eucrctshift 30271 konigsbergssiedgw 30278 wrdfd 32902 wrdres 32903 pfxf1 32910 s3f1 32915 ccatf1 32917 swrdrn3 32924 cycpmcl 33118 tocyc01 33120 cycpmco2rn 33127 cycpmrn 33145 tocyccntz 33146 cycpmconjslem2 33157 unitprodclb 33396 sseqf 34373 fiblem 34379 ofcccat 34536 signstcl 34558 signstf 34559 signstfvn 34562 signsvtn0 34563 signstres 34568 signsvtp 34576 signsvtn 34577 signsvfpn 34578 signsvfnn 34579 signshf 34581 revwlk 35108 mvrsfpw 35490 frlmfzowrdb 42490 amgm2d 44187 amgm3d 44188 amgm4d 44189 lswn0 47368 amgmw2d 49034 |
Copyright terms: Public domain | W3C validator |