| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version | ||
| Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 14533 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
| 3 | fnfzo0hash 14468 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
| 4 | 3 | oveq2d 7421 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
| 5 | 4 | feq2d 6692 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
| 6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 7 | 6 | rexlimiva 3133 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕ0cn0 12501 ..^cfzo 13671 ♯chash 14348 Word cword 14531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 |
| This theorem is referenced by: wrdfd 14537 iswrdb 14538 wrddm 14539 wrdsymbcl 14545 wrdfn 14546 wrdffz 14553 0wrd0 14558 wrdsymb 14560 wrdnval 14563 wrdred1 14578 wrdred1hash 14579 ccatcl 14592 ccatalpha 14611 s1dm 14626 swrdcl 14663 swrdf 14668 swrdwrdsymb 14680 pfxres 14697 cats1un 14739 revcl 14779 revlen 14780 revrev 14785 repsdf2 14796 cshwf 14818 cshinj 14829 wrdco 14850 lenco 14851 revco 14853 ccatco 14854 lswco 14858 s2dm 14909 wwlktovf 14975 s7f1o 14985 ofccat 14988 gsumwsubmcl 18815 gsumsgrpccat 18818 gsumwmhm 18823 frmdss2 18841 symgtrinv 19453 psgnunilem5 19475 psgnunilem2 19476 psgnunilem3 19477 efginvrel1 19709 efgsf 19710 efgsrel 19715 efgs1b 19717 efgredlemf 19722 efgredlemd 19725 efgredlemc 19726 efgredlem 19728 frgpup3lem 19758 pgpfaclem1 20064 ablfaclem2 20069 ablfaclem3 20070 ablfac2 20072 dchrptlem1 27227 dchrptlem2 27228 trgcgrg 28494 tgcgr4 28510 wrdupgr 29064 wrdumgr 29076 vdegp1ai 29516 vdegp1bi 29517 wlkres 29650 wlkp1 29661 wlkdlem1 29662 trlf1 29678 trlreslem 29679 upgrwlkdvdelem 29718 pthdlem1 29748 pthdlem2lem 29749 uspgrn2crct 29790 wlkiswwlks2lem3 29853 wlkiswwlksupgr2 29859 clwlkclwwlklem2a 29979 clwlkclwwlklem2 29981 1wlkdlem1 30118 wlk2v2e 30138 eucrctshift 30224 konigsbergssiedgw 30231 wrdres 32910 pfxf1 32917 s3f1 32922 ccatf1 32924 swrdrn3 32931 cycpmcl 33127 tocyc01 33129 cycpmco2rn 33136 cycpmrn 33154 tocyccntz 33155 cycpmconjslem2 33166 unitprodclb 33404 sseqf 34424 fiblem 34430 ofcccat 34575 signstcl 34597 signstf 34598 signstfvn 34601 signsvtn0 34602 signstres 34607 signsvtp 34615 signsvtn 34616 signsvfpn 34617 signsvfnn 34618 signshf 34620 revwlk 35147 mvrsfpw 35528 frlmfzowrdb 42527 amgm2d 44222 amgm3d 44223 amgm4d 44224 lswn0 47458 upgrimwlklem1 47910 upgrimwlklem2 47911 upgrimwlklem3 47912 upgrimtrlslem1 47917 upgrimtrlslem2 47918 gpgprismgr4cycllem9 48102 amgmw2d 49668 |
| Copyright terms: Public domain | W3C validator |