![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdf | Structured version Visualization version GIF version |
Description: A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
wrdf | ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswrd 14466 | . 2 ⊢ (𝑊 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆) | |
2 | simpr 486 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^𝑙)⟶𝑆) | |
3 | fnfzo0hash 14409 | . . . . . 6 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (♯‘𝑊) = 𝑙) | |
4 | 3 | oveq2d 7425 | . . . . 5 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (0..^(♯‘𝑊)) = (0..^𝑙)) |
5 | 4 | feq2d 6704 | . . . 4 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → (𝑊:(0..^(♯‘𝑊))⟶𝑆 ↔ 𝑊:(0..^𝑙)⟶𝑆)) |
6 | 2, 5 | mpbird 257 | . . 3 ⊢ ((𝑙 ∈ ℕ0 ∧ 𝑊:(0..^𝑙)⟶𝑆) → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
7 | 6 | rexlimiva 3148 | . 2 ⊢ (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝑊 ∈ Word 𝑆 → 𝑊:(0..^(♯‘𝑊))⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∃wrex 3071 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 0cc0 11110 ℕ0cn0 12472 ..^cfzo 13627 ♯chash 14290 Word cword 14464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 |
This theorem is referenced by: iswrdb 14470 wrddm 14471 wrdsymbcl 14477 wrdfn 14478 wrdffz 14485 0wrd0 14490 wrdsymb 14492 wrdnval 14495 wrdred1 14510 wrdred1hash 14511 ccatcl 14524 ccatalpha 14543 s1dm 14558 swrdcl 14595 swrdf 14600 swrdwrdsymb 14612 pfxres 14629 cats1un 14671 revcl 14711 revlen 14712 revrev 14717 repsdf2 14728 cshwf 14750 cshinj 14761 wrdco 14782 lenco 14783 revco 14785 ccatco 14786 lswco 14790 s2dm 14841 wwlktovf 14907 ofccat 14916 gsumwsubmcl 18718 gsumsgrpccat 18721 gsumwmhm 18726 frmdss2 18744 symgtrinv 19340 psgnunilem5 19362 psgnunilem2 19363 psgnunilem3 19364 efginvrel1 19596 efgsf 19597 efgsrel 19602 efgs1b 19604 efgredlemf 19609 efgredlemd 19612 efgredlemc 19613 efgredlem 19615 frgpup3lem 19645 pgpfaclem1 19951 ablfaclem2 19956 ablfaclem3 19957 ablfac2 19959 dchrptlem1 26767 dchrptlem2 26768 trgcgrg 27766 tgcgr4 27782 wrdupgr 28345 wrdumgr 28357 vdegp1ai 28793 vdegp1bi 28794 wlkres 28927 wlkp1 28938 wlkdlem1 28939 trlf1 28955 trlreslem 28956 upgrwlkdvdelem 28993 pthdlem1 29023 pthdlem2lem 29024 uspgrn2crct 29062 wlkiswwlks2lem3 29125 wlkiswwlksupgr2 29131 clwlkclwwlklem2a 29251 clwlkclwwlklem2 29253 1wlkdlem1 29390 wlk2v2e 29410 eucrctshift 29496 konigsbergssiedgw 29503 wrdfd 32102 wrdres 32103 pfxf1 32108 s3f1 32113 ccatf1 32115 swrdrn3 32119 cycpmcl 32275 tocyc01 32277 cycpmco2rn 32284 cycpmrn 32302 tocyccntz 32303 cycpmconjslem2 32314 sseqf 33391 fiblem 33397 ofcccat 33554 signstcl 33576 signstf 33577 signstfvn 33580 signsvtn0 33581 signstres 33586 signsvtp 33594 signsvtn 33595 signsvfpn 33596 signsvfnn 33597 signshf 33599 revwlk 34115 mvrsfpw 34497 frlmfzowrdb 41078 amgm2d 42950 amgm3d 42951 amgm4d 42952 lswn0 46112 amgmw2d 47851 |
Copyright terms: Public domain | W3C validator |