MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincom Structured version   Visualization version   GIF version

Theorem joincom 18365
Description: The join of a poset is commutative. (The antecedent βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ∧ βŸ¨π‘Œ, π‘‹βŸ© ∈ dom ∨ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joincom.b 𝐡 = (Baseβ€˜πΎ)
joincom.j ∨ = (joinβ€˜πΎ)
Assertion
Ref Expression
joincom (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ∧ βŸ¨π‘Œ, π‘‹βŸ© ∈ dom ∨ )) β†’ (𝑋 ∨ π‘Œ) = (π‘Œ ∨ 𝑋))

Proof of Theorem joincom
StepHypRef Expression
1 joincom.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 joincom.j . . 3 ∨ = (joinβ€˜πΎ)
31, 2joincomALT 18364 . 2 ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ∨ π‘Œ) = (π‘Œ ∨ 𝑋))
43adantr 480 1 (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ∧ βŸ¨π‘Œ, π‘‹βŸ© ∈ dom ∨ )) β†’ (𝑋 ∨ π‘Œ) = (π‘Œ ∨ 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βŸ¨cop 4629  dom cdm 5669  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  Posetcpo 18270  joincjn 18274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-lub 18309  df-join 18311
This theorem is referenced by:  latjcom  18410
  Copyright terms: Public domain W3C validator