![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joincomALT | Structured version Visualization version GIF version |
Description: The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
joincom.b | ⊢ 𝐵 = (Base‘𝐾) |
joincom.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joincomALT | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4737 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
2 | 1 | fveq2i 6910 | . . 3 ⊢ ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌}) |
3 | 2 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
4 | eqid 2735 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
5 | joincom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
6 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
7 | simp3 1137 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
8 | simp2 1136 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
9 | 4, 5, 6, 7, 8 | joinval 18435 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∨ 𝑋) = ((lub‘𝐾)‘{𝑌, 𝑋})) |
10 | 4, 5, 6, 8, 7 | joinval 18435 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
11 | 3, 9, 10 | 3eqtr4rd 2786 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cpr 4633 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lubclub 18367 joincjn 18369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-lub 18404 df-join 18406 |
This theorem is referenced by: joincom 18460 |
Copyright terms: Public domain | W3C validator |