MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincomALT Structured version   Visualization version   GIF version

Theorem joincomALT 18459
Description: The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
joincom.b 𝐵 = (Base‘𝐾)
joincom.j = (join‘𝐾)
Assertion
Ref Expression
joincomALT ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem joincomALT
StepHypRef Expression
1 prcom 4737 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6910 . . 3 ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌})
32a1i 11 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌}))
4 eqid 2735 . . 3 (lub‘𝐾) = (lub‘𝐾)
5 joincom.j . . 3 = (join‘𝐾)
6 simp1 1135 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝐾𝑉)
7 simp3 1137 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑌𝐵)
8 simp2 1136 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑋𝐵)
94, 5, 6, 7, 8joinval 18435 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = ((lub‘𝐾)‘{𝑌, 𝑋}))
104, 5, 6, 8, 7joinval 18435 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
113, 9, 103eqtr4rd 2786 1 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  {cpr 4633  cfv 6563  (class class class)co 7431  Basecbs 17245  lubclub 18367  joincjn 18369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-lub 18404  df-join 18406
This theorem is referenced by:  joincom  18460
  Copyright terms: Public domain W3C validator