MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincomALT Structured version   Visualization version   GIF version

Theorem joincomALT 18302
Description: The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
joincom.b 𝐵 = (Base‘𝐾)
joincom.j = (join‘𝐾)
Assertion
Ref Expression
joincomALT ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem joincomALT
StepHypRef Expression
1 prcom 4685 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6825 . . 3 ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌})
32a1i 11 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑌, 𝑋}) = ((lub‘𝐾)‘{𝑋, 𝑌}))
4 eqid 2731 . . 3 (lub‘𝐾) = (lub‘𝐾)
5 joincom.j . . 3 = (join‘𝐾)
6 simp1 1136 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝐾𝑉)
7 simp3 1138 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑌𝐵)
8 simp2 1137 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑋𝐵)
94, 5, 6, 7, 8joinval 18278 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = ((lub‘𝐾)‘{𝑌, 𝑋}))
104, 5, 6, 8, 7joinval 18278 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
113, 9, 103eqtr4rd 2777 1 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {cpr 4578  cfv 6481  (class class class)co 7346  Basecbs 17117  lubclub 18212  joincjn 18214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-lub 18247  df-join 18249
This theorem is referenced by:  joincom  18303
  Copyright terms: Public domain W3C validator