| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetcomALT | Structured version Visualization version GIF version | ||
| Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| meetcom.b | ⊢ 𝐵 = (Base‘𝐾) |
| meetcom.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetcomALT | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4714 | . . . 4 ⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | |
| 2 | 1 | fveq2i 6890 | . . 3 ⊢ ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌}) |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 4 | eqid 2734 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 5 | meetcom.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 6 | simp1 1136 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ 𝑉) | |
| 7 | simp3 1138 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 8 | simp2 1137 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 9 | 4, 5, 6, 7, 8 | meetval 18410 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∧ 𝑋) = ((glb‘𝐾)‘{𝑌, 𝑋})) |
| 10 | 4, 5, 6, 8, 7 | meetval 18410 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌})) |
| 11 | 3, 9, 10 | 3eqtr4rd 2780 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cpr 4610 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 glbcglb 18331 meetcmee 18333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-glb 18366 df-meet 18368 |
| This theorem is referenced by: meetcom 18423 |
| Copyright terms: Public domain | W3C validator |