![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > meetcomALT | Structured version Visualization version GIF version |
Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
meetcom.b | β’ π΅ = (BaseβπΎ) |
meetcom.m | β’ β§ = (meetβπΎ) |
Ref | Expression |
---|---|
meetcomALT | β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4737 | . . . 4 β’ {π, π} = {π, π} | |
2 | 1 | fveq2i 6895 | . . 3 β’ ((glbβπΎ)β{π, π}) = ((glbβπΎ)β{π, π}) |
3 | 2 | a1i 11 | . 2 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β ((glbβπΎ)β{π, π}) = ((glbβπΎ)β{π, π})) |
4 | eqid 2733 | . . 3 β’ (glbβπΎ) = (glbβπΎ) | |
5 | meetcom.m | . . 3 β’ β§ = (meetβπΎ) | |
6 | simp1 1137 | . . 3 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β πΎ β π) | |
7 | simp3 1139 | . . 3 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β π β π΅) | |
8 | simp2 1138 | . . 3 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β π β π΅) | |
9 | 4, 5, 6, 7, 8 | meetval 18344 | . 2 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β (π β§ π) = ((glbβπΎ)β{π, π})) |
10 | 4, 5, 6, 8, 7 | meetval 18344 | . 2 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β (π β§ π) = ((glbβπΎ)β{π, π})) |
11 | 3, 9, 10 | 3eqtr4rd 2784 | 1 β’ ((πΎ β π β§ π β π΅ β§ π β π΅) β (π β§ π) = (π β§ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 {cpr 4631 βcfv 6544 (class class class)co 7409 Basecbs 17144 glbcglb 18263 meetcmee 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-glb 18300 df-meet 18302 |
This theorem is referenced by: meetcom 18357 |
Copyright terms: Public domain | W3C validator |