MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetcomALT Structured version   Visualization version   GIF version

Theorem meetcomALT 18036
Description: The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
meetcom.b 𝐵 = (Base‘𝐾)
meetcom.m = (meet‘𝐾)
Assertion
Ref Expression
meetcomALT ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))

Proof of Theorem meetcomALT
StepHypRef Expression
1 prcom 4665 . . . 4 {𝑌, 𝑋} = {𝑋, 𝑌}
21fveq2i 6759 . . 3 ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌})
32a1i 11 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → ((glb‘𝐾)‘{𝑌, 𝑋}) = ((glb‘𝐾)‘{𝑋, 𝑌}))
4 eqid 2738 . . 3 (glb‘𝐾) = (glb‘𝐾)
5 meetcom.m . . 3 = (meet‘𝐾)
6 simp1 1134 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝐾𝑉)
7 simp3 1136 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑌𝐵)
8 simp2 1135 . . 3 ((𝐾𝑉𝑋𝐵𝑌𝐵) → 𝑋𝐵)
94, 5, 6, 7, 8meetval 18024 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑌 𝑋) = ((glb‘𝐾)‘{𝑌, 𝑋}))
104, 5, 6, 8, 7meetval 18024 . 2 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
113, 9, 103eqtr4rd 2789 1 ((𝐾𝑉𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  glbcglb 17943  meetcmee 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-glb 17980  df-meet 17982
This theorem is referenced by:  meetcom  18037
  Copyright terms: Public domain W3C validator