![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val | Structured version Visualization version GIF version |
Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
Ref | Expression |
---|---|
k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
Ref | Expression |
---|---|
k0004val | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7368 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
2 | 1 | oveq2d 7377 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1))) |
3 | 2 | oveq2d 7377 | . . 3 ⊢ (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1)))) |
4 | 2 | sumeq1d 15594 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘)) |
5 | 4 | eqeq1d 2735 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1)) |
6 | 3, 5 | rabeqbidv 3423 | . 2 ⊢ (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
7 | k0004.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
8 | ovex 7394 | . . 3 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V | |
9 | 8 | rabex 5293 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ∈ V |
10 | 6, 7, 9 | fvmpt 6952 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3406 ↦ cmpt 5192 ‘cfv 6500 (class class class)co 7361 ↑m cmap 8771 0cc0 11059 1c1 11060 + caddc 11062 ℕ0cn0 12421 [,]cicc 13276 ...cfz 13433 Σcsu 15579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-iota 6452 df-fun 6502 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-seq 13916 df-sum 15580 |
This theorem is referenced by: k0004ss1 42515 k0004val0 42518 |
Copyright terms: Public domain | W3C validator |