| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val | Structured version Visualization version GIF version | ||
| Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
| Ref | Expression |
|---|---|
| k0004val | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7421 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
| 2 | 1 | oveq2d 7430 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1))) |
| 3 | 2 | oveq2d 7430 | . . 3 ⊢ (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1)))) |
| 4 | 2 | sumeq1d 15719 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘)) |
| 5 | 4 | eqeq1d 2736 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1)) |
| 6 | 3, 5 | rabeqbidv 3439 | . 2 ⊢ (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| 7 | k0004.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
| 8 | ovex 7447 | . . 3 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V | |
| 9 | 8 | rabex 5321 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ∈ V |
| 10 | 6, 7, 9 | fvmpt 6997 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3420 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 0cc0 11138 1c1 11139 + caddc 11141 ℕ0cn0 12510 [,]cicc 13373 ...cfz 13530 Σcsu 15705 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-iota 6495 df-fun 6544 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-seq 14026 df-sum 15706 |
| This theorem is referenced by: k0004ss1 44109 k0004val0 44112 |
| Copyright terms: Public domain | W3C validator |