| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004val | Structured version Visualization version GIF version | ||
| Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
| Ref | Expression |
|---|---|
| k0004.a | ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) |
| Ref | Expression |
|---|---|
| k0004val | ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7396 | . . . . 5 ⊢ (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1)) | |
| 2 | 1 | oveq2d 7405 | . . . 4 ⊢ (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1))) |
| 3 | 2 | oveq2d 7405 | . . 3 ⊢ (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1)))) |
| 4 | 2 | sumeq1d 15672 | . . . 4 ⊢ (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘)) |
| 5 | 4 | eqeq1d 2732 | . . 3 ⊢ (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1)) |
| 6 | 3, 5 | rabeqbidv 3427 | . 2 ⊢ (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| 7 | k0004.a | . 2 ⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡‘𝑘) = 1}) | |
| 8 | ovex 7422 | . . 3 ⊢ ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V | |
| 9 | 8 | rabex 5296 | . 2 ⊢ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1} ∈ V |
| 10 | 6, 7, 9 | fvmpt 6970 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝐴‘𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡‘𝑘) = 1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 0cc0 11074 1c1 11075 + caddc 11077 ℕ0cn0 12448 [,]cicc 13315 ...cfz 13474 Σcsu 15658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fun 6515 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-seq 13973 df-sum 15659 |
| This theorem is referenced by: k0004ss1 44133 k0004val0 44136 |
| Copyright terms: Public domain | W3C validator |