Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val Structured version   Visualization version   GIF version

Theorem k0004val 44112
Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004val (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004val
StepHypRef Expression
1 oveq1 7376 . . . . 5 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
21oveq2d 7385 . . . 4 (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1)))
32oveq2d 7385 . . 3 (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1))))
42sumeq1d 15642 . . . 4 (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘))
54eqeq1d 2731 . . 3 (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1))
63, 5rabeqbidv 3421 . 2 (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
7 k0004.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
8 ovex 7402 . . 3 ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V
98rabex 5289 . 2 {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ∈ V
106, 7, 9fvmpt 6950 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  cmpt 5183  cfv 6499  (class class class)co 7369  m cmap 8776  0cc0 11044  1c1 11045   + caddc 11047  0cn0 12418  [,]cicc 13285  ...cfz 13444  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-iota 6452  df-fun 6501  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seq 13943  df-sum 15629
This theorem is referenced by:  k0004ss1  44113  k0004val0  44116
  Copyright terms: Public domain W3C validator