Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  k0004val Structured version   Visualization version   GIF version

Theorem k0004val 44132
Description: The topological simplex of dimension 𝑁 is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.)
Hypothesis
Ref Expression
k0004.a 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
Assertion
Ref Expression
k0004val (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
Distinct variable groups:   𝑘,𝑛   𝑡,𝑛   𝑘,𝑁   𝑡,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑡,𝑘,𝑛)

Proof of Theorem k0004val
StepHypRef Expression
1 oveq1 7396 . . . . 5 (𝑛 = 𝑁 → (𝑛 + 1) = (𝑁 + 1))
21oveq2d 7405 . . . 4 (𝑛 = 𝑁 → (1...(𝑛 + 1)) = (1...(𝑁 + 1)))
32oveq2d 7405 . . 3 (𝑛 = 𝑁 → ((0[,]1) ↑m (1...(𝑛 + 1))) = ((0[,]1) ↑m (1...(𝑁 + 1))))
42sumeq1d 15672 . . . 4 (𝑛 = 𝑁 → Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘))
54eqeq1d 2732 . . 3 (𝑛 = 𝑁 → (Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1 ↔ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1))
63, 5rabeqbidv 3427 . 2 (𝑛 = 𝑁 → {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1} = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
7 k0004.a . 2 𝐴 = (𝑛 ∈ ℕ0 ↦ {𝑡 ∈ ((0[,]1) ↑m (1...(𝑛 + 1))) ∣ Σ𝑘 ∈ (1...(𝑛 + 1))(𝑡𝑘) = 1})
8 ovex 7422 . . 3 ((0[,]1) ↑m (1...(𝑁 + 1))) ∈ V
98rabex 5296 . 2 {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1} ∈ V
106, 7, 9fvmpt 6970 1 (𝑁 ∈ ℕ0 → (𝐴𝑁) = {𝑡 ∈ ((0[,]1) ↑m (1...(𝑁 + 1))) ∣ Σ𝑘 ∈ (1...(𝑁 + 1))(𝑡𝑘) = 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3408  cmpt 5190  cfv 6513  (class class class)co 7389  m cmap 8801  0cc0 11074  1c1 11075   + caddc 11077  0cn0 12448  [,]cicc 13315  ...cfz 13474  Σcsu 15658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fun 6515  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-seq 13973  df-sum 15659
This theorem is referenced by:  k0004ss1  44133  k0004val0  44136
  Copyright terms: Public domain W3C validator