HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass1 Structured version   Visualization version   GIF version

Theorem kbass1 32052
Description: Dirac bra-ket associative law ( ∣ 𝐴⟩⟨𝐵 ∣ ) ∣ 𝐶⟩ = ∣ 𝐴⟩(⟨𝐵𝐶⟩), i.e., the juxtaposition of an outer product with a ket equals a bra juxtaposed with an inner product. Since 𝐵𝐶 is a complex number, it is the first argument in the inner product · that it is mapped to, although in Dirac notation it is placed after the ket. (Contributed by NM, 15-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) · 𝐴))

Proof of Theorem kbass1
StepHypRef Expression
1 kbval 31890 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2 braval 31880 . . . 4 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐵)‘𝐶) = (𝐶 ·ih 𝐵))
323adant1 1130 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐵)‘𝐶) = (𝐶 ·ih 𝐵))
43oveq1d 7405 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐵)‘𝐶) · 𝐴) = ((𝐶 ·ih 𝐵) · 𝐴))
51, 4eqtr4d 2768 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  chba 30855   · csm 30857   ·ih csp 30858  bracbr 30892   ketbra ck 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-bra 31786  df-kb 31787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator