![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbass1 | Structured version Visualization version GIF version |
Description: Dirac bra-ket associative law ( ∣ 𝐴〉〈𝐵 ∣ ) ∣ 𝐶〉 = ∣ 𝐴〉(〈𝐵 ∣ 𝐶〉), i.e., the juxtaposition of an outer product with a ket equals a bra juxtaposed with an inner product. Since 〈𝐵 ∣ 𝐶〉 is a complex number, it is the first argument in the inner product ·ℎ that it is mapped to, although in Dirac notation it is placed after the ket. (Contributed by NM, 15-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbass1 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) ·ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kbval 31986 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) | |
2 | braval 31976 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐵)‘𝐶) = (𝐶 ·ih 𝐵)) | |
3 | 2 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((bra‘𝐵)‘𝐶) = (𝐶 ·ih 𝐵)) |
4 | 3 | oveq1d 7463 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((bra‘𝐵)‘𝐶) ·ℎ 𝐴) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
5 | 1, 4 | eqtr4d 2783 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = (((bra‘𝐵)‘𝐶) ·ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℋchba 30951 ·ℎ csm 30953 ·ih csp 30954 bracbr 30988 ketbra ck 30989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-bra 31882 df-kb 31883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |