HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbval Structured version   Visualization version   GIF version

Theorem kbval 31889
Description: The value of the operator resulting from the outer product 𝐴 𝐵 of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
kbval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))

Proof of Theorem kbval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbfval 31887 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
21fveq1d 6862 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))‘𝐶))
3 oveq1 7396 . . . . 5 (𝑥 = 𝐶 → (𝑥 ·ih 𝐵) = (𝐶 ·ih 𝐵))
43oveq1d 7404 . . . 4 (𝑥 = 𝐶 → ((𝑥 ·ih 𝐵) · 𝐴) = ((𝐶 ·ih 𝐵) · 𝐴))
5 eqid 2730 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))
6 ovex 7422 . . . 4 ((𝐶 ·ih 𝐵) · 𝐴) ∈ V
74, 5, 6fvmpt 6970 . . 3 (𝐶 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
82, 7sylan9eq 2785 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
983impa 1109 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5190  cfv 6513  (class class class)co 7389  chba 30854   · csm 30856   ·ih csp 30857   ketbra ck 30892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-hilex 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-kb 31786
This theorem is referenced by:  kbpj  31891  kbass1  32051  kbass2  32052  kbass5  32055  kbass6  32056
  Copyright terms: Public domain W3C validator