HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbval Structured version   Visualization version   GIF version

Theorem kbval 29733
Description: The value of the operator resulting from the outer product 𝐴 𝐵 of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
kbval ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))

Proof of Theorem kbval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbfval 29731 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)))
21fveq1d 6674 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))‘𝐶))
3 oveq1 7165 . . . . 5 (𝑥 = 𝐶 → (𝑥 ·ih 𝐵) = (𝐶 ·ih 𝐵))
43oveq1d 7173 . . . 4 (𝑥 = 𝐶 → ((𝑥 ·ih 𝐵) · 𝐴) = ((𝐶 ·ih 𝐵) · 𝐴))
5 eqid 2823 . . . 4 (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))
6 ovex 7191 . . . 4 ((𝐶 ·ih 𝐵) · 𝐴) ∈ V
74, 5, 6fvmpt 6770 . . 3 (𝐶 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) · 𝐴))‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
82, 7sylan9eq 2878 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
983impa 1106 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cmpt 5148  cfv 6357  (class class class)co 7158  chba 28698   · csm 28700   ·ih csp 28701   ketbra ck 28736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-hilex 28778
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-kb 29630
This theorem is referenced by:  kbpj  29735  kbass1  29895  kbass2  29896  kbass5  29899  kbass6  29900
  Copyright terms: Public domain W3C validator