Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > kbval | Structured version Visualization version GIF version |
Description: The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kbfval 29848 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | |
2 | 1 | fveq1d 6665 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))‘𝐶)) |
3 | oveq1 7163 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ·ih 𝐵) = (𝐶 ·ih 𝐵)) | |
4 | 3 | oveq1d 7171 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
5 | eqid 2758 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) | |
6 | ovex 7189 | . . . 4 ⊢ ((𝐶 ·ih 𝐵) ·ℎ 𝐴) ∈ V | |
7 | 4, 5, 6 | fvmpt 6764 | . . 3 ⊢ (𝐶 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
8 | 2, 7 | sylan9eq 2813 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
9 | 8 | 3impa 1107 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 ℋchba 28815 ·ℎ csm 28817 ·ih csp 28818 ketbra ck 28853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-hilex 28895 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-kb 29747 |
This theorem is referenced by: kbpj 29852 kbass1 30012 kbass2 30013 kbass5 30016 kbass6 30017 |
Copyright terms: Public domain | W3C validator |