| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > kbval | Structured version Visualization version GIF version | ||
| Description: The value of the operator resulting from the outer product ∣ 𝐴〉 〈𝐵 ∣ of two vectors. Equation 8.1 of [Prugovecki] p. 376. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| kbval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kbfval 31922 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) | |
| 2 | 1 | fveq1d 6819 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))‘𝐶)) |
| 3 | oveq1 7348 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ·ih 𝐵) = (𝐶 ·ih 𝐵)) | |
| 4 | 3 | oveq1d 7356 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ·ih 𝐵) ·ℎ 𝐴) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
| 5 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) | |
| 6 | ovex 7374 | . . . 4 ⊢ ((𝐶 ·ih 𝐵) ·ℎ 𝐴) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6924 | . . 3 ⊢ (𝐶 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
| 8 | 2, 7 | sylan9eq 2785 | . 2 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) ·ℎ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ↦ cmpt 5170 ‘cfv 6477 (class class class)co 7341 ℋchba 30889 ·ℎ csm 30891 ·ih csp 30892 ketbra ck 30927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-hilex 30969 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-kb 31821 |
| This theorem is referenced by: kbpj 31926 kbass1 32086 kbass2 32087 kbass5 32090 kbass6 32091 |
| Copyright terms: Public domain | W3C validator |