| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > laut11 | Structured version Visualization version GIF version | ||
| Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| laut1o.b | ⊢ 𝐵 = (Base‘𝐾) |
| laut1o.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| laut11 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | laut1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | laut1o.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 3 | 1, 2 | laut1o 40074 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
| 4 | f1of1 6801 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵–1-1→𝐵) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1→𝐵) |
| 6 | f1fveq 7239 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐵 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) | |
| 7 | 5, 6 | sylan 580 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6510 –1-1-onto→wf1o 6512 ‘cfv 6513 Basecbs 17185 LAutclaut 39974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-laut 39978 |
| This theorem is referenced by: lautlt 40080 ltrn11 40115 |
| Copyright terms: Public domain | W3C validator |