![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > laut11 | Structured version Visualization version GIF version |
Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
laut1o.b | ⊢ 𝐵 = (Base‘𝐾) |
laut1o.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
laut11 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | laut1o.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
3 | 1, 2 | laut1o 36106 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
4 | f1of1 6355 | . . 3 ⊢ (𝐹:𝐵–1-1-onto→𝐵 → 𝐹:𝐵–1-1→𝐵) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1→𝐵) |
6 | f1fveq 6747 | . 2 ⊢ ((𝐹:𝐵–1-1→𝐵 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) | |
7 | 5, 6 | sylan 576 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 –1-1→wf1 6098 –1-1-onto→wf1o 6100 ‘cfv 6101 Basecbs 16184 LAutclaut 36006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-map 8097 df-laut 36010 |
This theorem is referenced by: lautlt 36112 ltrn11 36147 |
Copyright terms: Public domain | W3C validator |