Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  laut11 Structured version   Visualization version   GIF version

Theorem laut11 37330
Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
laut1o.b 𝐵 = (Base‘𝐾)
laut1o.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
laut11 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))

Proof of Theorem laut11
StepHypRef Expression
1 laut1o.b . . . 4 𝐵 = (Base‘𝐾)
2 laut1o.i . . . 4 𝐼 = (LAut‘𝐾)
31, 2laut1o 37329 . . 3 ((𝐾𝑉𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
4 f1of1 6605 . . 3 (𝐹:𝐵1-1-onto𝐵𝐹:𝐵1-1𝐵)
53, 4syl 17 . 2 ((𝐾𝑉𝐹𝐼) → 𝐹:𝐵1-1𝐵)
6 f1fveq 7012 . 2 ((𝐹:𝐵1-1𝐵 ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
75, 6sylan 583 1 (((𝐾𝑉𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  1-1wf1 6340  1-1-ontowf1o 6342  cfv 6343  Basecbs 16483  LAutclaut 37229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-map 8404  df-laut 37233
This theorem is referenced by:  lautlt  37335  ltrn11  37370
  Copyright terms: Public domain W3C validator