Proof of Theorem lautlt
Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . 4
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ 𝐴) |
2 | | simpr1 1193 |
. . . 4
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹 ∈ 𝐼) |
3 | | simpr2 1194 |
. . . 4
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
4 | | simpr3 1195 |
. . . 4
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
5 | | lautlt.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
6 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
7 | | lautlt.i |
. . . . 5
⊢ 𝐼 = (LAut‘𝐾) |
8 | 5, 6, 7 | lautle 38098 |
. . . 4
⊢ (((𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹‘𝑋)(le‘𝐾)(𝐹‘𝑌))) |
9 | 1, 2, 3, 4, 8 | syl22anc 836 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹‘𝑋)(le‘𝐾)(𝐹‘𝑌))) |
10 | 5, 7 | laut11 38100 |
. . . . . 6
⊢ (((𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
11 | 1, 2, 3, 4, 10 | syl22anc 836 |
. . . . 5
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) = (𝐹‘𝑌) ↔ 𝑋 = 𝑌)) |
12 | 11 | bicomd 222 |
. . . 4
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 = 𝑌 ↔ (𝐹‘𝑋) = (𝐹‘𝑌))) |
13 | 12 | necon3bid 2988 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≠ 𝑌 ↔ (𝐹‘𝑋) ≠ (𝐹‘𝑌))) |
14 | 9, 13 | anbi12d 631 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌) ↔ ((𝐹‘𝑋)(le‘𝐾)(𝐹‘𝑌) ∧ (𝐹‘𝑋) ≠ (𝐹‘𝑌)))) |
15 | | lautlt.s |
. . . 4
⊢ < =
(lt‘𝐾) |
16 | 6, 15 | pltval 18050 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
17 | 16 | 3adant3r1 1181 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌 ∧ 𝑋 ≠ 𝑌))) |
18 | 5, 7 | lautcl 38101 |
. . . 4
⊢ (((𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼) ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝐵) |
19 | 1, 2, 3, 18 | syl21anc 835 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑋) ∈ 𝐵) |
20 | 5, 7 | lautcl 38101 |
. . . 4
⊢ (((𝐾 ∈ 𝐴 ∧ 𝐹 ∈ 𝐼) ∧ 𝑌 ∈ 𝐵) → (𝐹‘𝑌) ∈ 𝐵) |
21 | 1, 2, 4, 20 | syl21anc 835 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘𝑌) ∈ 𝐵) |
22 | 6, 15 | pltval 18050 |
. . 3
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹‘𝑋) ∈ 𝐵 ∧ (𝐹‘𝑌) ∈ 𝐵) → ((𝐹‘𝑋) < (𝐹‘𝑌) ↔ ((𝐹‘𝑋)(le‘𝐾)(𝐹‘𝑌) ∧ (𝐹‘𝑋) ≠ (𝐹‘𝑌)))) |
23 | 1, 19, 21, 22 | syl3anc 1370 |
. 2
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘𝑋) < (𝐹‘𝑌) ↔ ((𝐹‘𝑋)(le‘𝐾)(𝐹‘𝑌) ∧ (𝐹‘𝑋) ≠ (𝐹‘𝑌)))) |
24 | 14, 17, 23 | 3bitr4d 311 |
1
⊢ ((𝐾 ∈ 𝐴 ∧ (𝐹 ∈ 𝐼 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 < 𝑌 ↔ (𝐹‘𝑋) < (𝐹‘𝑌))) |