Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautlt Structured version   Visualization version   GIF version

Theorem lautlt 40048
Description: Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautlt.b 𝐵 = (Base‘𝐾)
lautlt.s < = (lt‘𝐾)
lautlt.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautlt ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝐹𝑋) < (𝐹𝑌)))

Proof of Theorem lautlt
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾𝐴)
2 simpr1 1194 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
3 simpr2 1195 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 simpr3 1196 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
5 lautlt.b . . . . 5 𝐵 = (Base‘𝐾)
6 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 lautlt.i . . . . 5 𝐼 = (LAut‘𝐾)
85, 6, 7lautle 40041 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹𝑋)(le‘𝐾)(𝐹𝑌)))
91, 2, 3, 4, 8syl22anc 838 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹𝑋)(le‘𝐾)(𝐹𝑌)))
105, 7laut11 40043 . . . . . 6 (((𝐾𝐴𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
111, 2, 3, 4, 10syl22anc 838 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
1211bicomd 223 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 = 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
1312necon3bid 2991 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝑌 ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
149, 13anbi12d 631 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(le‘𝐾)𝑌𝑋𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
15 lautlt.s . . . 4 < = (lt‘𝐾)
166, 15pltval 18402 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
17163adant3r1 1182 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
185, 7lautcl 40044 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
191, 2, 3, 18syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
205, 7lautcl 40044 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
211, 2, 4, 20syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
226, 15pltval 18402 . . 3 ((𝐾𝐴 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) < (𝐹𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
231, 19, 21, 22syl3anc 1371 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) < (𝐹𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
2414, 17, 233bitr4d 311 1 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝐹𝑋) < (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  ltcplt 18378  LAutclaut 39942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-plt 18400  df-laut 39946
This theorem is referenced by:  lautcvr  40049
  Copyright terms: Public domain W3C validator