Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautlt Structured version   Visualization version   GIF version

Theorem lautlt 40115
Description: Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautlt.b 𝐵 = (Base‘𝐾)
lautlt.s < = (lt‘𝐾)
lautlt.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautlt ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝐹𝑋) < (𝐹𝑌)))

Proof of Theorem lautlt
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐾𝐴)
2 simpr1 1195 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝐹𝐼)
3 simpr2 1196 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 simpr3 1197 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
5 lautlt.b . . . . 5 𝐵 = (Base‘𝐾)
6 eqid 2736 . . . . 5 (le‘𝐾) = (le‘𝐾)
7 lautlt.i . . . . 5 𝐼 = (LAut‘𝐾)
85, 6, 7lautle 40108 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹𝑋)(le‘𝐾)(𝐹𝑌)))
91, 2, 3, 4, 8syl22anc 838 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋(le‘𝐾)𝑌 ↔ (𝐹𝑋)(le‘𝐾)(𝐹𝑌)))
105, 7laut11 40110 . . . . . 6 (((𝐾𝐴𝐹𝐼) ∧ (𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
111, 2, 3, 4, 10syl22anc 838 . . . . 5 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) = (𝐹𝑌) ↔ 𝑋 = 𝑌))
1211bicomd 223 . . . 4 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 = 𝑌 ↔ (𝐹𝑋) = (𝐹𝑌)))
1312necon3bid 2977 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋𝑌 ↔ (𝐹𝑋) ≠ (𝐹𝑌)))
149, 13anbi12d 632 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝑋(le‘𝐾)𝑌𝑋𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
15 lautlt.s . . . 4 < = (lt‘𝐾)
166, 15pltval 18347 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
17163adant3r1 1183 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝑋(le‘𝐾)𝑌𝑋𝑌)))
185, 7lautcl 40111 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
191, 2, 3, 18syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑋) ∈ 𝐵)
205, 7lautcl 40111 . . . 4 (((𝐾𝐴𝐹𝐼) ∧ 𝑌𝐵) → (𝐹𝑌) ∈ 𝐵)
211, 2, 4, 20syl21anc 837 . . 3 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝐹𝑌) ∈ 𝐵)
226, 15pltval 18347 . . 3 ((𝐾𝐴 ∧ (𝐹𝑋) ∈ 𝐵 ∧ (𝐹𝑌) ∈ 𝐵) → ((𝐹𝑋) < (𝐹𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
231, 19, 21, 22syl3anc 1373 . 2 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → ((𝐹𝑋) < (𝐹𝑌) ↔ ((𝐹𝑋)(le‘𝐾)(𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
2414, 17, 233bitr4d 311 1 ((𝐾𝐴 ∧ (𝐹𝐼𝑋𝐵𝑌𝐵)) → (𝑋 < 𝑌 ↔ (𝐹𝑋) < (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  Basecbs 17233  lecple 17283  ltcplt 18325  LAutclaut 40009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-plt 18345  df-laut 40013
This theorem is referenced by:  lautcvr  40116
  Copyright terms: Public domain W3C validator