Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  laut1o Structured version   Visualization version   GIF version

Theorem laut1o 40052
Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
laut1o.b 𝐵 = (Base‘𝐾)
laut1o.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
laut1o ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem laut1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 laut1o.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
3 laut1o.i . . 3 𝐼 = (LAut‘𝐾)
41, 2, 3islaut 40050 . 2 (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
54simprbda 498 1 ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  1-1-ontowf1o 6498  cfv 6499  Basecbs 17155  lecple 17203  LAutclaut 39952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-laut 39956
This theorem is referenced by:  laut11  40053  lautcl  40054  lautcnvclN  40055  lautcnvle  40056  lautcnv  40057  lautcvr  40059  lautj  40060  lautm  40061  lautco  40064  ldil1o  40079  ltrn1o  40091
  Copyright terms: Public domain W3C validator