![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > laut1o | Structured version Visualization version GIF version |
Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.) |
Ref | Expression |
---|---|
laut1o.b | β’ π΅ = (BaseβπΎ) |
laut1o.i | β’ πΌ = (LAutβπΎ) |
Ref | Expression |
---|---|
laut1o | β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2726 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | laut1o.i | . . 3 β’ πΌ = (LAutβπΎ) | |
4 | 1, 2, 3 | islaut 39465 | . 2 β’ (πΎ β π΄ β (πΉ β πΌ β (πΉ:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯(leβπΎ)π¦ β (πΉβπ₯)(leβπΎ)(πΉβπ¦))))) |
5 | 4 | simprbda 498 | 1 β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3055 class class class wbr 5141 β1-1-ontoβwf1o 6535 βcfv 6536 Basecbs 17151 lecple 17211 LAutclaut 39367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-laut 39371 |
This theorem is referenced by: laut11 39468 lautcl 39469 lautcnvclN 39470 lautcnvle 39471 lautcnv 39472 lautcvr 39474 lautj 39475 lautm 39476 lautco 39479 ldil1o 39494 ltrn1o 39506 |
Copyright terms: Public domain | W3C validator |