![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > laut1o | Structured version Visualization version GIF version |
Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.) |
Ref | Expression |
---|---|
laut1o.b | β’ π΅ = (BaseβπΎ) |
laut1o.i | β’ πΌ = (LAutβπΎ) |
Ref | Expression |
---|---|
laut1o | β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | eqid 2728 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
3 | laut1o.i | . . 3 β’ πΌ = (LAutβπΎ) | |
4 | 1, 2, 3 | islaut 39556 | . 2 β’ (πΎ β π΄ β (πΉ β πΌ β (πΉ:π΅β1-1-ontoβπ΅ β§ βπ₯ β π΅ βπ¦ β π΅ (π₯(leβπΎ)π¦ β (πΉβπ₯)(leβπΎ)(πΉβπ¦))))) |
5 | 4 | simprbda 498 | 1 β’ ((πΎ β π΄ β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3058 class class class wbr 5148 β1-1-ontoβwf1o 6547 βcfv 6548 Basecbs 17180 lecple 17240 LAutclaut 39458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-laut 39462 |
This theorem is referenced by: laut11 39559 lautcl 39560 lautcnvclN 39561 lautcnvle 39562 lautcnv 39563 lautcvr 39565 lautj 39566 lautm 39567 lautco 39570 ldil1o 39585 ltrn1o 39597 |
Copyright terms: Public domain | W3C validator |