Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  laut1o Structured version   Visualization version   GIF version

Theorem laut1o 39553
Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
laut1o.b 𝐵 = (Base‘𝐾)
laut1o.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
laut1o ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)

Proof of Theorem laut1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 laut1o.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2728 . . 3 (le‘𝐾) = (le‘𝐾)
3 laut1o.i . . 3 𝐼 = (LAut‘𝐾)
41, 2, 3islaut 39551 . 2 (𝐾𝐴 → (𝐹𝐼 ↔ (𝐹:𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
54simprbda 498 1 ((𝐾𝐴𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3057   class class class wbr 5143  1-1-ontowf1o 6542  cfv 6543  Basecbs 17174  lecple 17234  LAutclaut 39453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-laut 39457
This theorem is referenced by:  laut11  39554  lautcl  39555  lautcnvclN  39556  lautcnvle  39557  lautcnv  39558  lautcvr  39560  lautj  39561  lautm  39562  lautco  39565  ldil1o  39580  ltrn1o  39592
  Copyright terms: Public domain W3C validator