Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnvclN Structured version   Visualization version   GIF version

Theorem lautcnvclN 40107
Description: Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
laut1o.b 𝐵 = (Base‘𝐾)
laut1o.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcnvclN (((𝐾𝑉𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)

Proof of Theorem lautcnvclN
StepHypRef Expression
1 laut1o.b . . 3 𝐵 = (Base‘𝐾)
2 laut1o.i . . 3 𝐼 = (LAut‘𝐾)
31, 2laut1o 40104 . 2 ((𝐾𝑉𝐹𝐼) → 𝐹:𝐵1-1-onto𝐵)
4 f1ocnvdm 7278 . 2 ((𝐹:𝐵1-1-onto𝐵𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
53, 4sylan 580 1 (((𝐾𝑉𝐹𝐼) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ccnv 5653  1-1-ontowf1o 6530  cfv 6531  Basecbs 17228  LAutclaut 40004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-laut 40008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator