![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvclN | Structured version Visualization version GIF version |
Description: Reverse closure of a lattice automorphism. (Contributed by NM, 25-May-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
laut1o.b | β’ π΅ = (BaseβπΎ) |
laut1o.i | β’ πΌ = (LAutβπΎ) |
Ref | Expression |
---|---|
lautcnvclN | β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (β‘πΉβπ) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | laut1o.i | . . 3 β’ πΌ = (LAutβπΎ) | |
3 | 1, 2 | laut1o 39260 | . 2 β’ ((πΎ β π β§ πΉ β πΌ) β πΉ:π΅β1-1-ontoβπ΅) |
4 | f1ocnvdm 7286 | . 2 β’ ((πΉ:π΅β1-1-ontoβπ΅ β§ π β π΅) β (β‘πΉβπ) β π΅) | |
5 | 3, 4 | sylan 579 | 1 β’ (((πΎ β π β§ πΉ β πΌ) β§ π β π΅) β (β‘πΉβπ) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β‘ccnv 5676 β1-1-ontoβwf1o 6543 βcfv 6544 Basecbs 17149 LAutclaut 39160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8825 df-laut 39164 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |