| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvle | Structured version Visualization version GIF version | ||
| Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
| Ref | Expression |
|---|---|
| lautcnvle.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautcnvle.l | ⊢ ≤ = (le‘𝐾) |
| lautcnvle.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautcnvle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼)) | |
| 2 | lautcnvle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lautcnvle.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 2, 3 | laut1o 40084 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 6 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | f1ocnvdm 7222 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑋) ∈ 𝐵) |
| 9 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 10 | f1ocnvdm 7222 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (◡𝐹‘𝑌) ∈ 𝐵) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑌) ∈ 𝐵) |
| 12 | lautcnvle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 13 | 2, 12, 3 | lautle 40083 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((◡𝐹‘𝑋) ∈ 𝐵 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 14 | 1, 8, 11, 13 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 15 | f1ocnvfv2 7214 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
| 16 | 5, 6, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 17 | f1ocnvfv2 7214 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) | |
| 18 | 5, 9, 17 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
| 19 | 16, 18 | breq12d 5105 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
| 20 | 14, 19 | bitr2d 280 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ◡ccnv 5618 –1-1-onto→wf1o 6481 ‘cfv 6482 Basecbs 17120 lecple 17168 LAutclaut 39984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-laut 39988 |
| This theorem is referenced by: lautcnv 40089 lautj 40092 lautm 40093 ltrncnvleN 40129 ltrneq2 40147 |
| Copyright terms: Public domain | W3C validator |