Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvle | Structured version Visualization version GIF version |
Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
Ref | Expression |
---|---|
lautcnvle.b | ⊢ 𝐵 = (Base‘𝐾) |
lautcnvle.l | ⊢ ≤ = (le‘𝐾) |
lautcnvle.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
lautcnvle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼)) | |
2 | lautcnvle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
3 | lautcnvle.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
4 | 2, 3 | laut1o 38026 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
6 | simprl 767 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | f1ocnvdm 7137 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | |
8 | 5, 6, 7 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑋) ∈ 𝐵) |
9 | simprr 769 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
10 | f1ocnvdm 7137 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (◡𝐹‘𝑌) ∈ 𝐵) | |
11 | 5, 9, 10 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑌) ∈ 𝐵) |
12 | lautcnvle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
13 | 2, 12, 3 | lautle 38025 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((◡𝐹‘𝑋) ∈ 𝐵 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
14 | 1, 8, 11, 13 | syl12anc 833 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
15 | f1ocnvfv2 7130 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
16 | 5, 6, 15 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
17 | f1ocnvfv2 7130 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) | |
18 | 5, 9, 17 | syl2anc 583 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
19 | 16, 18 | breq12d 5083 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
20 | 14, 19 | bitr2d 279 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ◡ccnv 5579 –1-1-onto→wf1o 6417 ‘cfv 6418 Basecbs 16840 lecple 16895 LAutclaut 37926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-laut 37930 |
This theorem is referenced by: lautcnv 38031 lautj 38034 lautm 38035 ltrncnvleN 38071 ltrneq2 38089 |
Copyright terms: Public domain | W3C validator |