| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvle | Structured version Visualization version GIF version | ||
| Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
| Ref | Expression |
|---|---|
| lautcnvle.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautcnvle.l | ⊢ ≤ = (le‘𝐾) |
| lautcnvle.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautcnvle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼)) | |
| 2 | lautcnvle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lautcnvle.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 2, 3 | laut1o 40087 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 6 | simprl 771 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | f1ocnvdm 7305 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑋) ∈ 𝐵) |
| 9 | simprr 773 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 10 | f1ocnvdm 7305 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (◡𝐹‘𝑌) ∈ 𝐵) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑌) ∈ 𝐵) |
| 12 | lautcnvle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 13 | 2, 12, 3 | lautle 40086 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((◡𝐹‘𝑋) ∈ 𝐵 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 14 | 1, 8, 11, 13 | syl12anc 837 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 15 | f1ocnvfv2 7297 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
| 16 | 5, 6, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 17 | f1ocnvfv2 7297 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) | |
| 18 | 5, 9, 17 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
| 19 | 16, 18 | breq12d 5156 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
| 20 | 14, 19 | bitr2d 280 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ◡ccnv 5684 –1-1-onto→wf1o 6560 ‘cfv 6561 Basecbs 17247 lecple 17304 LAutclaut 39987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-laut 39991 |
| This theorem is referenced by: lautcnv 40092 lautj 40095 lautm 40096 ltrncnvleN 40132 ltrneq2 40150 |
| Copyright terms: Public domain | W3C validator |