| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnvle | Structured version Visualization version GIF version | ||
| Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.) |
| Ref | Expression |
|---|---|
| lautcnvle.b | ⊢ 𝐵 = (Base‘𝐾) |
| lautcnvle.l | ⊢ ≤ = (le‘𝐾) |
| lautcnvle.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautcnvle | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼)) | |
| 2 | lautcnvle.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | lautcnvle.i | . . . . . 6 ⊢ 𝐼 = (LAut‘𝐾) | |
| 4 | 2, 3 | laut1o 40183 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:𝐵–1-1-onto→𝐵) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐹:𝐵–1-1-onto→𝐵) |
| 6 | simprl 770 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | f1ocnvdm 7219 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (◡𝐹‘𝑋) ∈ 𝐵) | |
| 8 | 5, 6, 7 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑋) ∈ 𝐵) |
| 9 | simprr 772 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 10 | f1ocnvdm 7219 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (◡𝐹‘𝑌) ∈ 𝐵) | |
| 11 | 5, 9, 10 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (◡𝐹‘𝑌) ∈ 𝐵) |
| 12 | lautcnvle.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 13 | 2, 12, 3 | lautle 40182 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ ((◡𝐹‘𝑋) ∈ 𝐵 ∧ (◡𝐹‘𝑌) ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 14 | 1, 8, 11, 13 | syl12anc 836 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌) ↔ (𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)))) |
| 15 | f1ocnvfv2 7211 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) | |
| 16 | 5, 6, 15 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑋)) = 𝑋) |
| 17 | f1ocnvfv2 7211 | . . . 4 ⊢ ((𝐹:𝐵–1-1-onto→𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) | |
| 18 | 5, 9, 17 | syl2anc 584 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐹‘(◡𝐹‘𝑌)) = 𝑌) |
| 19 | 16, 18 | breq12d 5102 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝐹‘(◡𝐹‘𝑋)) ≤ (𝐹‘(◡𝐹‘𝑌)) ↔ 𝑋 ≤ 𝑌)) |
| 20 | 14, 19 | bitr2d 280 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ≤ 𝑌 ↔ (◡𝐹‘𝑋) ≤ (◡𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 –1-1-onto→wf1o 6480 ‘cfv 6481 Basecbs 17120 lecple 17168 LAutclaut 40083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-laut 40087 |
| This theorem is referenced by: lautcnv 40188 lautj 40191 lautm 40192 ltrncnvleN 40228 ltrneq2 40246 |
| Copyright terms: Public domain | W3C validator |