Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrevpfx Structured version   Visualization version   GIF version

Theorem swrdrevpfx 34635
Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.)
Assertion
Ref Expression
swrdrevpfx ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (π‘Š substr ⟨𝐹, 𝐿⟩) = (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))))

Proof of Theorem swrdrevpfx
StepHypRef Expression
1 fznn0sub2 13614 . . . . . 6 (𝐹 ∈ (0...𝐿) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿))
2 pfxcl 14633 . . . . . . . . 9 (π‘Š ∈ Word 𝑉 β†’ (π‘Š prefix 𝐿) ∈ Word 𝑉)
3 revcl 14717 . . . . . . . . 9 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
42, 3syl 17 . . . . . . . 8 (π‘Š ∈ Word 𝑉 β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
543ad2ant1 1130 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
6 simp3 1135 . . . . . . . 8 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿))
7 revlen 14718 . . . . . . . . . . . . 13 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
82, 7syl 17 . . . . . . . . . . . 12 (π‘Š ∈ Word 𝑉 β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
98adantr 480 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
10 pfxlen 14639 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(π‘Š prefix 𝐿)) = 𝐿)
119, 10eqtrd 2766 . . . . . . . . . 10 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
12113adant3 1129 . . . . . . . . 9 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
1312oveq2d 7421 . . . . . . . 8 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))) = (0...𝐿))
146, 13eleqtrrd 2830 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))))
155, 14jca 511 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
161, 15syl3an3 1162 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ 𝐹 ∈ (0...𝐿)) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
17163com23 1123 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
18 revpfxsfxrev 34634 . . . 4 (((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
1917, 18syl 17 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
20 revrev 14723 . . . . . 6 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (π‘Š prefix 𝐿))
212, 20syl 17 . . . . 5 (π‘Š ∈ Word 𝑉 β†’ (reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (π‘Š prefix 𝐿))
2221oveq1d 7420 . . . 4 (π‘Š ∈ Word 𝑉 β†’ ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
23223ad2ant1 1130 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
2411oveq1d 7420 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)))
25243adant2 1128 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)))
26 elfzel2 13505 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ β„€)
2726zcnd 12671 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ β„‚)
28 elfzelz 13507 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) β†’ 𝐹 ∈ β„€)
2928zcnd 12671 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐹 ∈ β„‚)
3027, 29nncand 11580 . . . . . . 7 (𝐹 ∈ (0...𝐿) β†’ (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
31303ad2ant2 1131 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
3225, 31eqtrd 2766 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
33113adant2 1128 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
3432, 33opeq12d 4876 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩ = ⟨𝐹, 𝐿⟩)
3534oveq2d 7421 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
3619, 23, 353eqtrd 2770 . 2 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
37 elfzuz3 13504 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ (β„€β‰₯β€˜πΉ))
38 eluzfz2 13515 . . . . . . . 8 (𝐿 ∈ (β„€β‰₯β€˜πΉ) β†’ 𝐿 ∈ (𝐹...𝐿))
3937, 38syl 17 . . . . . . 7 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ (𝐹...𝐿))
4039ancli 548 . . . . . 6 (𝐹 ∈ (0...𝐿) β†’ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
41403ad2ant2 1131 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
42 swrdpfx 14663 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
4341, 42syl5 34 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
44433adant2 1128 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
4544pm2.43i 52 . 2 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩))
4636, 45eqtr2d 2767 1 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (π‘Š substr ⟨𝐹, 𝐿⟩) = (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βŸ¨cop 4629  β€˜cfv 6537  (class class class)co 7405  0cc0 11112   βˆ’ cmin 11448  β„€β‰₯cuz 12826  ...cfz 13490  β™―chash 14295  Word cword 14470   substr csubstr 14596   prefix cpfx 14626  reversecreverse 14714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-substr 14597  df-pfx 14627  df-reverse 14715
This theorem is referenced by:  swrdwlk  34645
  Copyright terms: Public domain W3C validator