Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrevpfx Structured version   Visualization version   GIF version

Theorem swrdrevpfx 35111
Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.)
Assertion
Ref Expression
swrdrevpfx ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))

Proof of Theorem swrdrevpfx
StepHypRef Expression
1 fznn0sub2 13603 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ (0...𝐿))
2 pfxcl 14649 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉)
3 revcl 14733 . . . . . . . . 9 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
543ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
6 simp3 1138 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...𝐿))
7 revlen 14734 . . . . . . . . . . . . 13 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
82, 7syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
98adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
10 pfxlen 14655 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿)
119, 10eqtrd 2765 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
12113adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
1312oveq2d 7406 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))) = (0...𝐿))
146, 13eleqtrrd 2832 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))))
155, 14jca 511 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
161, 15syl3an3 1165 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐹 ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
17163com23 1126 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
18 revpfxsfxrev 35110 . . . 4 (((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
1917, 18syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
20 revrev 14739 . . . . . 6 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
212, 20syl 17 . . . . 5 (𝑊 ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
2221oveq1d 7405 . . . 4 (𝑊 ∈ Word 𝑉 → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
23223ad2ant1 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
2411oveq1d 7405 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
25243adant2 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
26 elfzel2 13490 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
2726zcnd 12646 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
28 elfzelz 13492 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ)
2928zcnd 12646 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℂ)
3027, 29nncand 11545 . . . . . . 7 (𝐹 ∈ (0...𝐿) → (𝐿 − (𝐿𝐹)) = 𝐹)
31303ad2ant2 1134 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐿 − (𝐿𝐹)) = 𝐹)
3225, 31eqtrd 2765 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = 𝐹)
33113adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
3432, 33opeq12d 4848 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩ = ⟨𝐹, 𝐿⟩)
3534oveq2d 7406 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
3619, 23, 353eqtrd 2769 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
37 elfzuz3 13489 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐹))
38 eluzfz2 13500 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ (𝐹...𝐿))
3937, 38syl 17 . . . . . . 7 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (𝐹...𝐿))
4039ancli 548 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
41403ad2ant2 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
42 swrdpfx 14679 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4341, 42syl5 34 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
44433adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4544pm2.43i 52 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩))
4636, 45eqtr2d 2766 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4598  cfv 6514  (class class class)co 7390  0cc0 11075  cmin 11412  cuz 12800  ...cfz 13475  chash 14302  Word cword 14485   substr csubstr 14612   prefix cpfx 14642  reversecreverse 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-substr 14613  df-pfx 14643  df-reverse 14731
This theorem is referenced by:  swrdwlk  35121
  Copyright terms: Public domain W3C validator