Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrevpfx Structured version   Visualization version   GIF version

Theorem swrdrevpfx 33710
Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.)
Assertion
Ref Expression
swrdrevpfx ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))

Proof of Theorem swrdrevpfx
StepHypRef Expression
1 fznn0sub2 13548 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ (0...𝐿))
2 pfxcl 14565 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉)
3 revcl 14649 . . . . . . . . 9 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
543ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
6 simp3 1138 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...𝐿))
7 revlen 14650 . . . . . . . . . . . . 13 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
82, 7syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
98adantr 481 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
10 pfxlen 14571 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿)
119, 10eqtrd 2776 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
12113adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
1312oveq2d 7373 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))) = (0...𝐿))
146, 13eleqtrrd 2841 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))))
155, 14jca 512 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
161, 15syl3an3 1165 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐹 ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
17163com23 1126 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
18 revpfxsfxrev 33709 . . . 4 (((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
1917, 18syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
20 revrev 14655 . . . . . 6 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
212, 20syl 17 . . . . 5 (𝑊 ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
2221oveq1d 7372 . . . 4 (𝑊 ∈ Word 𝑉 → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
23223ad2ant1 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
2411oveq1d 7372 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
25243adant2 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
26 elfzel2 13439 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
2726zcnd 12608 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
28 elfzelz 13441 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ)
2928zcnd 12608 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℂ)
3027, 29nncand 11517 . . . . . . 7 (𝐹 ∈ (0...𝐿) → (𝐿 − (𝐿𝐹)) = 𝐹)
31303ad2ant2 1134 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐿 − (𝐿𝐹)) = 𝐹)
3225, 31eqtrd 2776 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = 𝐹)
33113adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
3432, 33opeq12d 4838 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩ = ⟨𝐹, 𝐿⟩)
3534oveq2d 7373 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
3619, 23, 353eqtrd 2780 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
37 elfzuz3 13438 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐹))
38 eluzfz2 13449 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ (𝐹...𝐿))
3937, 38syl 17 . . . . . . 7 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (𝐹...𝐿))
4039ancli 549 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
41403ad2ant2 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
42 swrdpfx 14595 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4341, 42syl5 34 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
44433adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4544pm2.43i 52 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩))
4636, 45eqtr2d 2777 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  cop 4592  cfv 6496  (class class class)co 7357  0cc0 11051  cmin 11385  cuz 12763  ...cfz 13424  chash 14230  Word cword 14402   substr csubstr 14528   prefix cpfx 14558  reversecreverse 14646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-hash 14231  df-word 14403  df-substr 14529  df-pfx 14559  df-reverse 14647
This theorem is referenced by:  swrdwlk  33720
  Copyright terms: Public domain W3C validator