Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrevpfx Structured version   Visualization version   GIF version

Theorem swrdrevpfx 34095
Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.)
Assertion
Ref Expression
swrdrevpfx ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (π‘Š substr ⟨𝐹, 𝐿⟩) = (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))))

Proof of Theorem swrdrevpfx
StepHypRef Expression
1 fznn0sub2 13604 . . . . . 6 (𝐹 ∈ (0...𝐿) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿))
2 pfxcl 14623 . . . . . . . . 9 (π‘Š ∈ Word 𝑉 β†’ (π‘Š prefix 𝐿) ∈ Word 𝑉)
3 revcl 14707 . . . . . . . . 9 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
42, 3syl 17 . . . . . . . 8 (π‘Š ∈ Word 𝑉 β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
543ad2ant1 1133 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉)
6 simp3 1138 . . . . . . . 8 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿))
7 revlen 14708 . . . . . . . . . . . . 13 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
82, 7syl 17 . . . . . . . . . . . 12 (π‘Š ∈ Word 𝑉 β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
98adantr 481 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (β™―β€˜(π‘Š prefix 𝐿)))
10 pfxlen 14629 . . . . . . . . . . 11 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(π‘Š prefix 𝐿)) = 𝐿)
119, 10eqtrd 2772 . . . . . . . . . 10 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
12113adant3 1132 . . . . . . . . 9 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
1312oveq2d 7421 . . . . . . . 8 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))) = (0...𝐿))
146, 13eleqtrrd 2836 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))))
155, 14jca 512 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ (𝐿 βˆ’ 𝐹) ∈ (0...𝐿)) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
161, 15syl3an3 1165 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š)) ∧ 𝐹 ∈ (0...𝐿)) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
17163com23 1126 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))))
18 revpfxsfxrev 34094 . . . 4 (((reverseβ€˜(π‘Š prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿 βˆ’ 𝐹) ∈ (0...(β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
1917, 18syl 17 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
20 revrev 14713 . . . . . 6 ((π‘Š prefix 𝐿) ∈ Word 𝑉 β†’ (reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (π‘Š prefix 𝐿))
212, 20syl 17 . . . . 5 (π‘Š ∈ Word 𝑉 β†’ (reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) = (π‘Š prefix 𝐿))
2221oveq1d 7420 . . . 4 (π‘Š ∈ Word 𝑉 β†’ ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
23223ad2ant1 1133 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((reverseβ€˜(reverseβ€˜(π‘Š prefix 𝐿))) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩))
2411oveq1d 7420 . . . . . . 7 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)))
25243adant2 1131 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)))
26 elfzel2 13495 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ β„€)
2726zcnd 12663 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ β„‚)
28 elfzelz 13497 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) β†’ 𝐹 ∈ β„€)
2928zcnd 12663 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐹 ∈ β„‚)
3027, 29nncand 11572 . . . . . . 7 (𝐹 ∈ (0...𝐿) β†’ (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
31303ad2ant2 1134 . . . . . 6 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (𝐿 βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
3225, 31eqtrd 2772 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)) = 𝐹)
33113adant2 1131 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) = 𝐿)
3432, 33opeq12d 4880 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩ = ⟨𝐹, 𝐿⟩)
3534oveq2d 7421 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨((β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿))) βˆ’ (𝐿 βˆ’ 𝐹)), (β™―β€˜(reverseβ€˜(π‘Š prefix 𝐿)))⟩) = ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
3619, 23, 353eqtrd 2776 . 2 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))) = ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
37 elfzuz3 13494 . . . . . . . 8 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ (β„€β‰₯β€˜πΉ))
38 eluzfz2 13505 . . . . . . . 8 (𝐿 ∈ (β„€β‰₯β€˜πΉ) β†’ 𝐿 ∈ (𝐹...𝐿))
3937, 38syl 17 . . . . . . 7 (𝐹 ∈ (0...𝐿) β†’ 𝐿 ∈ (𝐹...𝐿))
4039ancli 549 . . . . . 6 (𝐹 ∈ (0...𝐿) β†’ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
41403ad2ant2 1134 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
42 swrdpfx 14653 . . . . 5 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
4341, 42syl5 34 . . . 4 ((π‘Š ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
44433adant2 1131 . . 3 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩)))
4544pm2.43i 52 . 2 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ ((π‘Š prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (π‘Š substr ⟨𝐹, 𝐿⟩))
4636, 45eqtr2d 2773 1 ((π‘Š ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(β™―β€˜π‘Š))) β†’ (π‘Š substr ⟨𝐹, 𝐿⟩) = (reverseβ€˜((reverseβ€˜(π‘Š prefix 𝐿)) prefix (𝐿 βˆ’ 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4633  β€˜cfv 6540  (class class class)co 7405  0cc0 11106   βˆ’ cmin 11440  β„€β‰₯cuz 12818  ...cfz 13480  β™―chash 14286  Word cword 14460   substr csubstr 14586   prefix cpfx 14616  reversecreverse 14704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-substr 14587  df-pfx 14617  df-reverse 14705
This theorem is referenced by:  swrdwlk  34105
  Copyright terms: Public domain W3C validator