Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  swrdrevpfx Structured version   Visualization version   GIF version

Theorem swrdrevpfx 35089
Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.)
Assertion
Ref Expression
swrdrevpfx ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))

Proof of Theorem swrdrevpfx
StepHypRef Expression
1 fznn0sub2 13556 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐿𝐹) ∈ (0...𝐿))
2 pfxcl 14602 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) ∈ Word 𝑉)
3 revcl 14685 . . . . . . . . 9 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
543ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉)
6 simp3 1138 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...𝐿))
7 revlen 14686 . . . . . . . . . . . . 13 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
82, 7syl 17 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
98adantr 480 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = (♯‘(𝑊 prefix 𝐿)))
10 pfxlen 14608 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝐿)) = 𝐿)
119, 10eqtrd 2764 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
12113adant3 1132 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
1312oveq2d 7369 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))) = (0...𝐿))
146, 13eleqtrrd 2831 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿)))))
155, 14jca 511 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ (𝐿𝐹) ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
161, 15syl3an3 1165 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐹 ∈ (0...𝐿)) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
17163com23 1126 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))))
18 revpfxsfxrev 35088 . . . 4 (((reverse‘(𝑊 prefix 𝐿)) ∈ Word 𝑉 ∧ (𝐿𝐹) ∈ (0...(♯‘(reverse‘(𝑊 prefix 𝐿))))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
1917, 18syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
20 revrev 14691 . . . . . 6 ((𝑊 prefix 𝐿) ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
212, 20syl 17 . . . . 5 (𝑊 ∈ Word 𝑉 → (reverse‘(reverse‘(𝑊 prefix 𝐿))) = (𝑊 prefix 𝐿))
2221oveq1d 7368 . . . 4 (𝑊 ∈ Word 𝑉 → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
23223ad2ant1 1133 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((reverse‘(reverse‘(𝑊 prefix 𝐿))) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩))
2411oveq1d 7368 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
25243adant2 1131 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = (𝐿 − (𝐿𝐹)))
26 elfzel2 13443 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
2726zcnd 12599 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ ℂ)
28 elfzelz 13445 . . . . . . . . 9 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℤ)
2928zcnd 12599 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐹 ∈ ℂ)
3027, 29nncand 11498 . . . . . . 7 (𝐹 ∈ (0...𝐿) → (𝐿 − (𝐿𝐹)) = 𝐹)
31303ad2ant2 1134 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐿 − (𝐿𝐹)) = 𝐹)
3225, 31eqtrd 2764 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)) = 𝐹)
33113adant2 1131 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (♯‘(reverse‘(𝑊 prefix 𝐿))) = 𝐿)
3432, 33opeq12d 4835 . . . 4 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩ = ⟨𝐹, 𝐿⟩)
3534oveq2d 7369 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨((♯‘(reverse‘(𝑊 prefix 𝐿))) − (𝐿𝐹)), (♯‘(reverse‘(𝑊 prefix 𝐿)))⟩) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
3619, 23, 353eqtrd 2768 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))) = ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩))
37 elfzuz3 13442 . . . . . . . 8 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (ℤ𝐹))
38 eluzfz2 13453 . . . . . . . 8 (𝐿 ∈ (ℤ𝐹) → 𝐿 ∈ (𝐹...𝐿))
3937, 38syl 17 . . . . . . 7 (𝐹 ∈ (0...𝐿) → 𝐿 ∈ (𝐹...𝐿))
4039ancli 548 . . . . . 6 (𝐹 ∈ (0...𝐿) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
41403ad2ant2 1134 . . . . 5 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)))
42 swrdpfx 14631 . . . . 5 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (𝐹...𝐿)) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4341, 42syl5 34 . . . 4 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
44433adant2 1131 . . 3 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩)))
4544pm2.43i 52 . 2 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 prefix 𝐿) substr ⟨𝐹, 𝐿⟩) = (𝑊 substr ⟨𝐹, 𝐿⟩))
4636, 45eqtr2d 2765 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr ⟨𝐹, 𝐿⟩) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4585  cfv 6486  (class class class)co 7353  0cc0 11028  cmin 11365  cuz 12753  ...cfz 13428  chash 14255  Word cword 14438   substr csubstr 14565   prefix cpfx 14595  reversecreverse 14682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-substr 14566  df-pfx 14596  df-reverse 14683
This theorem is referenced by:  swrdwlk  35099
  Copyright terms: Public domain W3C validator