Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdrcl Structured version   Visualization version   GIF version

Theorem lmdrcl 49619
Description: Reverse closure for a limit of a diagram. (Contributed by Zhi Wang, 20-Nov-2025.)
Assertion
Ref Expression
lmdrcl (𝑋 ∈ ((𝐶 Limit 𝐷)‘𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))

Proof of Theorem lmdrcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lmdfval 49617 . 2 (𝐶 Limit 𝐷) = (𝑓 ∈ (𝐷 Func 𝐶) ↦ ((oppFunc‘(𝐶Δfunc𝐷))((oppCat‘𝐶) UP (oppCat‘(𝐷 FuncCat 𝐶)))𝑓))
21mptrcl 6979 1 (𝑋 ∈ ((𝐶 Limit 𝐷)‘𝐹) → 𝐹 ∈ (𝐷 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6513  (class class class)co 7389  oppCatcoppc 17678   Func cfunc 17822   FuncCat cfuc 17913  Δfunccdiag 18179  oppFunccoppf 49099   UP cup 49146   Limit clmd 49611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-func 17826  df-lmd 49613
This theorem is referenced by:  termolmd  49638
  Copyright terms: Public domain W3C validator