| Step | Hyp | Ref
| Expression |
| 1 | | termorcl 17929 |
. . . 4
⊢ (𝑥 ∈ (TermO‘𝐶) → 𝐶 ∈ Cat) |
| 2 | | vex 3448 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 3 | 2 | eldm 5854 |
. . . . 5
⊢ (𝑥 ∈ dom ((𝐶 Limit ∅)‘〈∅,
∅〉) ↔ ∃𝑦 𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦) |
| 4 | | df-br 5103 |
. . . . . . . . 9
⊢ (𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦 ↔
〈𝑥, 𝑦〉 ∈ ((𝐶 Limit ∅)‘〈∅,
∅〉)) |
| 5 | | lmdrcl 49613 |
. . . . . . . . 9
⊢
(〈𝑥, 𝑦〉 ∈ ((𝐶 Limit
∅)‘〈∅, ∅〉) → 〈∅,
∅〉 ∈ (∅ Func 𝐶)) |
| 6 | 4, 5 | sylbi 217 |
. . . . . . . 8
⊢ (𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦 →
〈∅, ∅〉 ∈ (∅ Func 𝐶)) |
| 7 | 6 | func1st2nd 49038 |
. . . . . . 7
⊢ (𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦 →
(1st ‘〈∅, ∅〉)(∅ Func 𝐶)(2nd
‘〈∅, ∅〉)) |
| 8 | 7 | funcrcl3 49042 |
. . . . . 6
⊢ (𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦 →
𝐶 ∈
Cat) |
| 9 | 8 | exlimiv 1930 |
. . . . 5
⊢
(∃𝑦 𝑥((𝐶 Limit ∅)‘〈∅,
∅〉)𝑦 →
𝐶 ∈
Cat) |
| 10 | 3, 9 | sylbi 217 |
. . . 4
⊢ (𝑥 ∈ dom ((𝐶 Limit ∅)‘〈∅,
∅〉) → 𝐶
∈ Cat) |
| 11 | | initocmd 49631 |
. . . . . 6
⊢
(InitO‘(oppCat‘𝐶)) = dom (∅((oppCat‘𝐶) Colimit
∅)∅) |
| 12 | | oppctermo 49198 |
. . . . . . . 8
⊢ (𝑥 ∈ (TermO‘𝐶) ↔ 𝑥 ∈ (InitO‘(oppCat‘𝐶))) |
| 13 | 12 | eqriv 2726 |
. . . . . . 7
⊢
(TermO‘𝐶) =
(InitO‘(oppCat‘𝐶)) |
| 14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
(TermO‘𝐶) =
(InitO‘(oppCat‘𝐶))) |
| 15 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
| 16 | 15 | 2oppchomf 17661 |
. . . . . . . . . . 11
⊢
(Homf ‘𝐶) = (Homf
‘(oppCat‘(oppCat‘𝐶))) |
| 17 | 16 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(Homf ‘𝐶) = (Homf
‘(oppCat‘(oppCat‘𝐶)))) |
| 18 | 15 | 2oppccomf 17662 |
. . . . . . . . . . 11
⊢
(compf‘𝐶) =
(compf‘(oppCat‘(oppCat‘𝐶))) |
| 19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(compf‘𝐶) =
(compf‘(oppCat‘(oppCat‘𝐶)))) |
| 20 | | ral0 4472 |
. . . . . . . . . . 11
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
∅ (𝑥(Hom
‘∅)𝑦) = (𝑥(Hom
‘(oppCat‘∅))𝑦) |
| 21 | | eqid 2729 |
. . . . . . . . . . . 12
⊢ (Hom
‘∅) = (Hom ‘∅) |
| 22 | | eqid 2729 |
. . . . . . . . . . . 12
⊢ (Hom
‘(oppCat‘∅)) = (Hom
‘(oppCat‘∅)) |
| 23 | | base0 17160 |
. . . . . . . . . . . . 13
⊢ ∅ =
(Base‘∅) |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ Cat → ∅ =
(Base‘∅)) |
| 25 | | eqid 2729 |
. . . . . . . . . . . . . 14
⊢
(oppCat‘∅) = (oppCat‘∅) |
| 26 | 25, 23 | oppcbas 17655 |
. . . . . . . . . . . . 13
⊢ ∅ =
(Base‘(oppCat‘∅)) |
| 27 | 26 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ Cat → ∅ =
(Base‘(oppCat‘∅))) |
| 28 | 21, 22, 24, 27 | homfeq 17631 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Cat →
((Homf ‘∅) = (Homf
‘(oppCat‘∅)) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥(Hom ‘∅)𝑦) = (𝑥(Hom ‘(oppCat‘∅))𝑦))) |
| 29 | 20, 28 | mpbiri 258 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(Homf ‘∅) = (Homf
‘(oppCat‘∅))) |
| 30 | | ral0 4472 |
. . . . . . . . . . 11
⊢
∀𝑥 ∈
∅ ∀𝑦 ∈
∅ ∀𝑧 ∈
∅ ∀𝑓 ∈
(𝑥(Hom ‘∅)𝑦)∀𝑔 ∈ (𝑦(Hom ‘∅)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘∅))𝑧)𝑓) |
| 31 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(comp‘∅) = (comp‘∅) |
| 32 | | eqid 2729 |
. . . . . . . . . . . 12
⊢
(comp‘(oppCat‘∅)) =
(comp‘(oppCat‘∅)) |
| 33 | 31, 32, 21, 24, 27, 29 | comfeq 17643 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Cat →
((compf‘∅) =
(compf‘(oppCat‘∅)) ↔ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ ∀𝑧 ∈ ∅ ∀𝑓 ∈ (𝑥(Hom ‘∅)𝑦)∀𝑔 ∈ (𝑦(Hom ‘∅)𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘∅)𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉(comp‘(oppCat‘∅))𝑧)𝑓))) |
| 34 | 30, 33 | mpbiri 258 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(compf‘∅) =
(compf‘(oppCat‘∅))) |
| 35 | | elex 3465 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat → 𝐶 ∈ V) |
| 36 | | fvexd 6855 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(oppCat‘(oppCat‘𝐶)) ∈ V) |
| 37 | | 0ex 5257 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
| 38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat → ∅
∈ V) |
| 39 | | fvexd 6855 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(oppCat‘∅) ∈ V) |
| 40 | 17, 19, 29, 34, 35, 36, 38, 39 | lmdpropd 49619 |
. . . . . . . . 9
⊢ (𝐶 ∈ Cat → (𝐶 Limit ∅) =
((oppCat‘(oppCat‘𝐶)) Limit
(oppCat‘∅))) |
| 41 | | eqidd 2730 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ Cat → ∅ =
∅) |
| 42 | | 0cat 17626 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ Cat |
| 43 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ Cat → ∅
∈ Cat) |
| 44 | 43, 24, 43 | 0funcg2 49046 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ Cat →
(∅(∅ Func ∅)∅ ↔ (∅ = ∅ ∧ ∅ =
∅))) |
| 45 | 41, 41, 44 | mpbir2and 713 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ Cat →
∅(∅ Func ∅)∅) |
| 46 | | oppfval 49098 |
. . . . . . . . . . 11
⊢
(∅(∅ Func ∅)∅ → (∅ oppFunc ∅) =
〈∅, tpos ∅〉) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat → (∅
oppFunc ∅) = 〈∅, tpos ∅〉) |
| 48 | | tpos0 8212 |
. . . . . . . . . . 11
⊢ tpos
∅ = ∅ |
| 49 | 48 | opeq2i 4837 |
. . . . . . . . . 10
⊢
〈∅, tpos ∅〉 = 〈∅,
∅〉 |
| 50 | 47, 49 | eqtr2di 2781 |
. . . . . . . . 9
⊢ (𝐶 ∈ Cat →
〈∅, ∅〉 = (∅ oppFunc ∅)) |
| 51 | 40, 50 | fveq12d 6847 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat → ((𝐶 Limit
∅)‘〈∅, ∅〉) =
(((oppCat‘(oppCat‘𝐶)) Limit
(oppCat‘∅))‘(∅ oppFunc ∅))) |
| 52 | | df-ov 7372 |
. . . . . . . . 9
⊢
(∅((oppCat‘𝐶) Colimit ∅)∅) =
(((oppCat‘𝐶) Colimit
∅)‘〈∅, ∅〉) |
| 53 | | eqid 2729 |
. . . . . . . . . 10
⊢
(oppCat‘(oppCat‘𝐶)) = (oppCat‘(oppCat‘𝐶)) |
| 54 | | df-ov 7372 |
. . . . . . . . . 10
⊢ (∅
oppFunc ∅) = ( oppFunc ‘〈∅,
∅〉) |
| 55 | | fvexd 6855 |
. . . . . . . . . 10
⊢ (𝐶 ∈ Cat →
(oppCat‘𝐶) ∈
V) |
| 56 | 53, 25, 54, 55, 38 | cmddu 49630 |
. . . . . . . . 9
⊢ (𝐶 ∈ Cat →
(((oppCat‘𝐶) Colimit
∅)‘〈∅, ∅〉) =
(((oppCat‘(oppCat‘𝐶)) Limit
(oppCat‘∅))‘(∅ oppFunc ∅))) |
| 57 | 52, 56 | eqtrid 2776 |
. . . . . . . 8
⊢ (𝐶 ∈ Cat →
(∅((oppCat‘𝐶)
Colimit ∅)∅) = (((oppCat‘(oppCat‘𝐶)) Limit
(oppCat‘∅))‘(∅ oppFunc ∅))) |
| 58 | 51, 57 | eqtr4d 2767 |
. . . . . . 7
⊢ (𝐶 ∈ Cat → ((𝐶 Limit
∅)‘〈∅, ∅〉) = (∅((oppCat‘𝐶) Colimit
∅)∅)) |
| 59 | 58 | dmeqd 5859 |
. . . . . 6
⊢ (𝐶 ∈ Cat → dom ((𝐶 Limit
∅)‘〈∅, ∅〉) = dom (∅((oppCat‘𝐶) Colimit
∅)∅)) |
| 60 | 11, 14, 59 | 3eqtr4a 2790 |
. . . . 5
⊢ (𝐶 ∈ Cat →
(TermO‘𝐶) = dom
((𝐶 Limit
∅)‘〈∅, ∅〉)) |
| 61 | 60 | eleq2d 2814 |
. . . 4
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (TermO‘𝐶) ↔ 𝑥 ∈ dom ((𝐶 Limit ∅)‘〈∅,
∅〉))) |
| 62 | 1, 10, 61 | pm5.21nii 378 |
. . 3
⊢ (𝑥 ∈ (TermO‘𝐶) ↔ 𝑥 ∈ dom ((𝐶 Limit ∅)‘〈∅,
∅〉)) |
| 63 | 62 | eqriv 2726 |
. 2
⊢
(TermO‘𝐶) =
dom ((𝐶 Limit
∅)‘〈∅, ∅〉) |
| 64 | | df-ov 7372 |
. . 3
⊢
(∅(𝐶 Limit
∅)∅) = ((𝐶
Limit ∅)‘〈∅, ∅〉) |
| 65 | 64 | dmeqi 5858 |
. 2
⊢ dom
(∅(𝐶 Limit
∅)∅) = dom ((𝐶
Limit ∅)‘〈∅, ∅〉) |
| 66 | 63, 65 | eqtr4i 2755 |
1
⊢
(TermO‘𝐶) =
dom (∅(𝐶 Limit
∅)∅) |