MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvnegid Structured version   Visualization version   GIF version

Theorem lmodvnegid 19676
Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvnegid.v 𝑉 = (Base‘𝑊)
lmodvnegid.p + = (+g𝑊)
lmodvnegid.z 0 = (0g𝑊)
lmodvnegid.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lmodvnegid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem lmodvnegid
StepHypRef Expression
1 lmodgrp 19641 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvnegid.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvnegid.p . . 3 + = (+g𝑊)
4 lmodvnegid.z . . 3 0 = (0g𝑊)
5 lmodvnegid.n . . 3 𝑁 = (invg𝑊)
62, 3, 4, 5grprinv 18153 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
71, 6sylan 583 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104  LModclmod 19634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-riota 7107  df-ov 7152  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-lmod 19636
This theorem is referenced by:  lmodvneg1  19677  hdmapneg  39087  lincext3  44791
  Copyright terms: Public domain W3C validator