![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvnegid | Structured version Visualization version GIF version |
Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvnegid.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvnegid.p | ⊢ + = (+g‘𝑊) |
lmodvnegid.z | ⊢ 0 = (0g‘𝑊) |
lmodvnegid.n | ⊢ 𝑁 = (invg‘𝑊) |
Ref | Expression |
---|---|
lmodvnegid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodgrp 19225 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
2 | lmodvnegid.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lmodvnegid.p | . . 3 ⊢ + = (+g‘𝑊) | |
4 | lmodvnegid.z | . . 3 ⊢ 0 = (0g‘𝑊) | |
5 | lmodvnegid.n | . . 3 ⊢ 𝑁 = (invg‘𝑊) | |
6 | 2, 3, 4, 5 | grprinv 17822 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
7 | 1, 6 | sylan 577 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + (𝑁‘𝑋)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ‘cfv 6122 (class class class)co 6904 Basecbs 16221 +gcplusg 16304 0gc0g 16452 Grpcgrp 17775 invgcminusg 17776 LModclmod 19218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-grp 17778 df-minusg 17779 df-lmod 19220 |
This theorem is referenced by: lmodvneg1 19261 hdmapneg 37920 lincext3 43091 |
Copyright terms: Public domain | W3C validator |