MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvnegid Structured version   Visualization version   GIF version

Theorem lmodvnegid 20832
Description: Addition of a vector with its negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvnegid.v 𝑉 = (Base‘𝑊)
lmodvnegid.p + = (+g𝑊)
lmodvnegid.z 0 = (0g𝑊)
lmodvnegid.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lmodvnegid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )

Proof of Theorem lmodvnegid
StepHypRef Expression
1 lmodgrp 20795 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvnegid.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvnegid.p . . 3 + = (+g𝑊)
4 lmodvnegid.z . . 3 0 = (0g𝑊)
5 lmodvnegid.n . . 3 𝑁 = (invg𝑊)
62, 3, 4, 5grprinv 18898 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
71, 6sylan 580 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 + (𝑁𝑋)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Grpcgrp 18841  invgcminusg 18842  LModclmod 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-riota 7298  df-ov 7344  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-lmod 20790
This theorem is referenced by:  lmodvneg1  20833  hdmapneg  41885  lincext3  48488
  Copyright terms: Public domain W3C validator