MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvnegcl Structured version   Visualization version   GIF version

Theorem lmodvnegcl 20901
Description: Closure of vector negative. (Contributed by NM, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvnegcl.v 𝑉 = (Base‘𝑊)
lmodvnegcl.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lmodvnegcl ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)

Proof of Theorem lmodvnegcl
StepHypRef Expression
1 lmodgrp 20865 . 2 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
2 lmodvnegcl.v . . 3 𝑉 = (Base‘𝑊)
3 lmodvnegcl.n . . 3 𝑁 = (invg𝑊)
42, 3grpinvcl 19005 . 2 ((𝑊 ∈ Grp ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
51, 4sylan 580 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  Basecbs 17247  Grpcgrp 18951  invgcminusg 18952  LModclmod 20858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-lmod 20860
This theorem is referenced by:  lmodvneg1  20903  lspsnneg  21004  lspsntrim  21097  baerlem5amN  41718  baerlem5bmN  41719  baerlem5abmN  41720  hdmapneg  41848  hdmapsub  41849
  Copyright terms: Public domain W3C validator