Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   GIF version

Theorem kercvrlsm 43058
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u 𝑈 = (LSubSp‘𝑆)
kercvrlsm.p = (LSSum‘𝑆)
kercvrlsm.z 0 = (0g𝑇)
kercvrlsm.k 𝐾 = (𝐹 “ { 0 })
kercvrlsm.b 𝐵 = (Base‘𝑆)
kercvrlsm.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
kercvrlsm.d (𝜑𝐷𝑈)
kercvrlsm.cv (𝜑 → (𝐹𝐷) = ran 𝐹)
Assertion
Ref Expression
kercvrlsm (𝜑 → (𝐾 𝐷) = 𝐵)

Proof of Theorem kercvrlsm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmhmlmod1 21000 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑆 ∈ LMod)
4 kercvrlsm.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5 kercvrlsm.z . . . . . 6 0 = (0g𝑇)
6 kercvrlsm.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
74, 5, 6lmhmkerlss 21018 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾𝑈)
81, 7syl 17 . . . 4 (𝜑𝐾𝑈)
9 kercvrlsm.d . . . 4 (𝜑𝐷𝑈)
10 kercvrlsm.p . . . . 5 = (LSSum‘𝑆)
116, 10lsmcl 21050 . . . 4 ((𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈) → (𝐾 𝐷) ∈ 𝑈)
123, 8, 9, 11syl3anc 1372 . . 3 (𝜑 → (𝐾 𝐷) ∈ 𝑈)
13 kercvrlsm.b . . . 4 𝐵 = (Base‘𝑆)
1413, 6lssss 20902 . . 3 ((𝐾 𝐷) ∈ 𝑈 → (𝐾 𝐷) ⊆ 𝐵)
1512, 14syl 17 . 2 (𝜑 → (𝐾 𝐷) ⊆ 𝐵)
16 eqid 2734 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
1713, 16lmhmf 21001 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
181, 17syl 17 . . . . . . 7 (𝜑𝐹:𝐵⟶(Base‘𝑇))
1918ffnd 6717 . . . . . 6 (𝜑𝐹 Fn 𝐵)
20 fnfvelrn 7080 . . . . . 6 ((𝐹 Fn 𝐵𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
2119, 20sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
22 kercvrlsm.cv . . . . . 6 (𝜑 → (𝐹𝐷) = ran 𝐹)
2322adantr 480 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝐷) = ran 𝐹)
2421, 23eleqtrrd 2836 . . . 4 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ (𝐹𝐷))
2519adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐹 Fn 𝐵)
2613, 6lssss 20902 . . . . . . 7 (𝐷𝑈𝐷𝐵)
279, 26syl 17 . . . . . 6 (𝜑𝐷𝐵)
2827adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐷𝐵)
29 fvelimab 6961 . . . . 5 ((𝐹 Fn 𝐵𝐷𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3025, 28, 29syl2anc 584 . . . 4 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3124, 30mpbid 232 . . 3 ((𝜑𝑎𝐵) → ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎))
32 lmodgrp 20833 . . . . . . . . . . 11 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
333, 32syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
3433adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑆 ∈ Grp)
35 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑎𝐵)
3627sselda 3963 . . . . . . . . . 10 ((𝜑𝑏𝐷) → 𝑏𝐵)
3736adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑏𝐵)
38 eqid 2734 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
39 eqid 2734 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
4013, 38, 39grpnpcan 19019 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4134, 35, 37, 40syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4241adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
433ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑆 ∈ LMod)
4413, 6lssss 20902 . . . . . . . . . 10 (𝐾𝑈𝐾𝐵)
458, 44syl 17 . . . . . . . . 9 (𝜑𝐾𝐵)
4645ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐾𝐵)
4727ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐷𝐵)
48 eqcom 2741 . . . . . . . . . 10 ((𝐹𝑏) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑏))
49 lmghm 20998 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5150adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5213, 5, 4, 39ghmeqker 19230 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎𝐵𝑏𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5351, 35, 37, 52syl3anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5448, 53bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5554biimpa 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (𝑎(-g𝑆)𝑏) ∈ 𝐾)
56 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑏𝐷)
5713, 38, 10lsmelvalix 19627 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵) ∧ ((𝑎(-g𝑆)𝑏) ∈ 𝐾𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5843, 46, 47, 55, 56, 57syl32anc 1379 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5942, 58eqeltrrd 2834 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑎 ∈ (𝐾 𝐷))
6059ex 412 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6160anassrs 467 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐷) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6261rexlimdva 3142 . . 3 ((𝜑𝑎𝐵) → (∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6331, 62mpd 15 . 2 ((𝜑𝑎𝐵) → 𝑎 ∈ (𝐾 𝐷))
6415, 63eqelssd 3985 1 (𝜑 → (𝐾 𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  wss 3931  {csn 4606  ccnv 5664  ran crn 5666  cima 5668   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  0gc0g 17455  Grpcgrp 18920  -gcsg 18922   GrpHom cghm 19199  LSSumclsm 19620  LModclmod 20826  LSubSpclss 20897   LMHom clmhm 20986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-ghm 19200  df-cntz 19304  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20828  df-lss 20898  df-lmhm 20989
This theorem is referenced by:  lmhmfgsplit  43061
  Copyright terms: Public domain W3C validator