| Step | Hyp | Ref
| Expression |
| 1 | | kercvrlsm.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 2 | | lmhmlmod1 20996 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ LMod) |
| 4 | | kercvrlsm.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
| 5 | | kercvrlsm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑇) |
| 6 | | kercvrlsm.u |
. . . . . 6
⊢ 𝑈 = (LSubSp‘𝑆) |
| 7 | 4, 5, 6 | lmhmkerlss 21014 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ 𝑈) |
| 8 | 1, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ 𝑈) |
| 9 | | kercvrlsm.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
| 10 | | kercvrlsm.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝑆) |
| 11 | 6, 10 | lsmcl 21046 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝐾 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → (𝐾 ⊕ 𝐷) ∈ 𝑈) |
| 12 | 3, 8, 9, 11 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐾 ⊕ 𝐷) ∈ 𝑈) |
| 13 | | kercvrlsm.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
| 14 | 13, 6 | lssss 20898 |
. . 3
⊢ ((𝐾 ⊕ 𝐷) ∈ 𝑈 → (𝐾 ⊕ 𝐷) ⊆ 𝐵) |
| 15 | 12, 14 | syl 17 |
. 2
⊢ (𝜑 → (𝐾 ⊕ 𝐷) ⊆ 𝐵) |
| 16 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 17 | 13, 16 | lmhmf 20997 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇)) |
| 18 | 1, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑇)) |
| 19 | 18 | ffnd 6712 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐵) |
| 20 | | fnfvelrn 7075 |
. . . . . 6
⊢ ((𝐹 Fn 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 21 | 19, 20 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ ran 𝐹) |
| 22 | | kercvrlsm.cv |
. . . . . 6
⊢ (𝜑 → (𝐹 “ 𝐷) = ran 𝐹) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹 “ 𝐷) = ran 𝐹) |
| 24 | 21, 23 | eleqtrrd 2838 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ (𝐹 “ 𝐷)) |
| 25 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐹 Fn 𝐵) |
| 26 | 13, 6 | lssss 20898 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑈 → 𝐷 ⊆ 𝐵) |
| 27 | 9, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ 𝐵) |
| 28 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐷 ⊆ 𝐵) |
| 29 | | fvelimab 6956 |
. . . . 5
⊢ ((𝐹 Fn 𝐵 ∧ 𝐷 ⊆ 𝐵) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎))) |
| 30 | 25, 28, 29 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎))) |
| 31 | 24, 30 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎)) |
| 32 | | lmodgrp 20829 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ LMod → 𝑆 ∈ Grp) |
| 33 | 3, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Grp) |
| 34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑆 ∈ Grp) |
| 35 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑎 ∈ 𝐵) |
| 36 | 27 | sselda 3963 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐵) |
| 37 | 36 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑏 ∈ 𝐵) |
| 38 | | eqid 2736 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 39 | | eqid 2736 |
. . . . . . . . . 10
⊢
(-g‘𝑆) = (-g‘𝑆) |
| 40 | 13, 38, 39 | grpnpcan 19020 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
| 41 | 34, 35, 37, 40 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
| 42 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
| 43 | 3 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑆 ∈ LMod) |
| 44 | 13, 6 | lssss 20898 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝑈 → 𝐾 ⊆ 𝐵) |
| 45 | 8, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ⊆ 𝐵) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝐾 ⊆ 𝐵) |
| 47 | 27 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝐷 ⊆ 𝐵) |
| 48 | | eqcom 2743 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) |
| 49 | | lmghm 20994 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 50 | 1, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 52 | 13, 5, 4, 39 | ghmeqker 19231 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
| 53 | 51, 35, 37, 52 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
| 54 | 48, 53 | bitrid 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
| 55 | 54 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → (𝑎(-g‘𝑆)𝑏) ∈ 𝐾) |
| 56 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑏 ∈ 𝐷) |
| 57 | 13, 38, 10 | lsmelvalix 19627 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝐾 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵) ∧ ((𝑎(-g‘𝑆)𝑏) ∈ 𝐾 ∧ 𝑏 ∈ 𝐷)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) ∈ (𝐾 ⊕ 𝐷)) |
| 58 | 43, 46, 47, 55, 56, 57 | syl32anc 1380 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) ∈ (𝐾 ⊕ 𝐷)) |
| 59 | 42, 58 | eqeltrrd 2836 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑎 ∈ (𝐾 ⊕ 𝐷)) |
| 60 | 59 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
| 61 | 60 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
| 62 | 61 | rexlimdva 3142 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
| 63 | 31, 62 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ (𝐾 ⊕ 𝐷)) |
| 64 | 15, 63 | eqelssd 3985 |
1
⊢ (𝜑 → (𝐾 ⊕ 𝐷) = 𝐵) |