Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   GIF version

Theorem kercvrlsm 40824
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u 𝑈 = (LSubSp‘𝑆)
kercvrlsm.p = (LSSum‘𝑆)
kercvrlsm.z 0 = (0g𝑇)
kercvrlsm.k 𝐾 = (𝐹 “ { 0 })
kercvrlsm.b 𝐵 = (Base‘𝑆)
kercvrlsm.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
kercvrlsm.d (𝜑𝐷𝑈)
kercvrlsm.cv (𝜑 → (𝐹𝐷) = ran 𝐹)
Assertion
Ref Expression
kercvrlsm (𝜑 → (𝐾 𝐷) = 𝐵)

Proof of Theorem kercvrlsm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmhmlmod1 20210 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑆 ∈ LMod)
4 kercvrlsm.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5 kercvrlsm.z . . . . . 6 0 = (0g𝑇)
6 kercvrlsm.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
74, 5, 6lmhmkerlss 20228 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾𝑈)
81, 7syl 17 . . . 4 (𝜑𝐾𝑈)
9 kercvrlsm.d . . . 4 (𝜑𝐷𝑈)
10 kercvrlsm.p . . . . 5 = (LSSum‘𝑆)
116, 10lsmcl 20260 . . . 4 ((𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈) → (𝐾 𝐷) ∈ 𝑈)
123, 8, 9, 11syl3anc 1369 . . 3 (𝜑 → (𝐾 𝐷) ∈ 𝑈)
13 kercvrlsm.b . . . 4 𝐵 = (Base‘𝑆)
1413, 6lssss 20113 . . 3 ((𝐾 𝐷) ∈ 𝑈 → (𝐾 𝐷) ⊆ 𝐵)
1512, 14syl 17 . 2 (𝜑 → (𝐾 𝐷) ⊆ 𝐵)
16 eqid 2738 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
1713, 16lmhmf 20211 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
181, 17syl 17 . . . . . . 7 (𝜑𝐹:𝐵⟶(Base‘𝑇))
1918ffnd 6585 . . . . . 6 (𝜑𝐹 Fn 𝐵)
20 fnfvelrn 6940 . . . . . 6 ((𝐹 Fn 𝐵𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
2119, 20sylan 579 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
22 kercvrlsm.cv . . . . . 6 (𝜑 → (𝐹𝐷) = ran 𝐹)
2322adantr 480 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝐷) = ran 𝐹)
2421, 23eleqtrrd 2842 . . . 4 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ (𝐹𝐷))
2519adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐹 Fn 𝐵)
2613, 6lssss 20113 . . . . . . 7 (𝐷𝑈𝐷𝐵)
279, 26syl 17 . . . . . 6 (𝜑𝐷𝐵)
2827adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐷𝐵)
29 fvelimab 6823 . . . . 5 ((𝐹 Fn 𝐵𝐷𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3025, 28, 29syl2anc 583 . . . 4 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3124, 30mpbid 231 . . 3 ((𝜑𝑎𝐵) → ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎))
32 lmodgrp 20045 . . . . . . . . . . 11 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
333, 32syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
3433adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑆 ∈ Grp)
35 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑎𝐵)
3627sselda 3917 . . . . . . . . . 10 ((𝜑𝑏𝐷) → 𝑏𝐵)
3736adantrl 712 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑏𝐵)
38 eqid 2738 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
39 eqid 2738 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
4013, 38, 39grpnpcan 18582 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4134, 35, 37, 40syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4241adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
433ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑆 ∈ LMod)
4413, 6lssss 20113 . . . . . . . . . 10 (𝐾𝑈𝐾𝐵)
458, 44syl 17 . . . . . . . . 9 (𝜑𝐾𝐵)
4645ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐾𝐵)
4727ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐷𝐵)
48 eqcom 2745 . . . . . . . . . 10 ((𝐹𝑏) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑏))
49 lmghm 20208 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5150adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5213, 5, 4, 39ghmeqker 18776 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎𝐵𝑏𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5351, 35, 37, 52syl3anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5448, 53syl5bb 282 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5554biimpa 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (𝑎(-g𝑆)𝑏) ∈ 𝐾)
56 simplrr 774 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑏𝐷)
5713, 38, 10lsmelvalix 19161 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵) ∧ ((𝑎(-g𝑆)𝑏) ∈ 𝐾𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5843, 46, 47, 55, 56, 57syl32anc 1376 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5942, 58eqeltrrd 2840 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑎 ∈ (𝐾 𝐷))
6059ex 412 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6160anassrs 467 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐷) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6261rexlimdva 3212 . . 3 ((𝜑𝑎𝐵) → (∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6331, 62mpd 15 . 2 ((𝜑𝑎𝐵) → 𝑎 ∈ (𝐾 𝐷))
6415, 63eqelssd 3938 1 (𝜑 → (𝐾 𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wss 3883  {csn 4558  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  -gcsg 18494   GrpHom cghm 18746  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108   LMHom clmhm 20196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lmhm 20199
This theorem is referenced by:  lmhmfgsplit  40827
  Copyright terms: Public domain W3C validator