Step | Hyp | Ref
| Expression |
1 | | kercvrlsm.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
2 | | lmhmlmod1 20210 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ LMod) |
4 | | kercvrlsm.k |
. . . . . 6
⊢ 𝐾 = (◡𝐹 “ { 0 }) |
5 | | kercvrlsm.z |
. . . . . 6
⊢ 0 =
(0g‘𝑇) |
6 | | kercvrlsm.u |
. . . . . 6
⊢ 𝑈 = (LSubSp‘𝑆) |
7 | 4, 5, 6 | lmhmkerlss 20228 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾 ∈ 𝑈) |
8 | 1, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ 𝑈) |
9 | | kercvrlsm.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑈) |
10 | | kercvrlsm.p |
. . . . 5
⊢ ⊕ =
(LSSum‘𝑆) |
11 | 6, 10 | lsmcl 20260 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ 𝐾 ∈ 𝑈 ∧ 𝐷 ∈ 𝑈) → (𝐾 ⊕ 𝐷) ∈ 𝑈) |
12 | 3, 8, 9, 11 | syl3anc 1369 |
. . 3
⊢ (𝜑 → (𝐾 ⊕ 𝐷) ∈ 𝑈) |
13 | | kercvrlsm.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
14 | 13, 6 | lssss 20113 |
. . 3
⊢ ((𝐾 ⊕ 𝐷) ∈ 𝑈 → (𝐾 ⊕ 𝐷) ⊆ 𝐵) |
15 | 12, 14 | syl 17 |
. 2
⊢ (𝜑 → (𝐾 ⊕ 𝐷) ⊆ 𝐵) |
16 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑇) =
(Base‘𝑇) |
17 | 13, 16 | lmhmf 20211 |
. . . . . . . 8
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇)) |
18 | 1, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑇)) |
19 | 18 | ffnd 6585 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn 𝐵) |
20 | | fnfvelrn 6940 |
. . . . . 6
⊢ ((𝐹 Fn 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ ran 𝐹) |
21 | 19, 20 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ ran 𝐹) |
22 | | kercvrlsm.cv |
. . . . . 6
⊢ (𝜑 → (𝐹 “ 𝐷) = ran 𝐹) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹 “ 𝐷) = ran 𝐹) |
24 | 21, 23 | eleqtrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (𝐹‘𝑎) ∈ (𝐹 “ 𝐷)) |
25 | 19 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐹 Fn 𝐵) |
26 | 13, 6 | lssss 20113 |
. . . . . . 7
⊢ (𝐷 ∈ 𝑈 → 𝐷 ⊆ 𝐵) |
27 | 9, 26 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐷 ⊆ 𝐵) |
28 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝐷 ⊆ 𝐵) |
29 | | fvelimab 6823 |
. . . . 5
⊢ ((𝐹 Fn 𝐵 ∧ 𝐷 ⊆ 𝐵) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎))) |
30 | 25, 28, 29 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((𝐹‘𝑎) ∈ (𝐹 “ 𝐷) ↔ ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎))) |
31 | 24, 30 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎)) |
32 | | lmodgrp 20045 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ LMod → 𝑆 ∈ Grp) |
33 | 3, 32 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ Grp) |
34 | 33 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑆 ∈ Grp) |
35 | | simprl 767 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑎 ∈ 𝐵) |
36 | 27 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐷) → 𝑏 ∈ 𝐵) |
37 | 36 | adantrl 712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝑏 ∈ 𝐵) |
38 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
39 | | eqid 2738 |
. . . . . . . . . 10
⊢
(-g‘𝑆) = (-g‘𝑆) |
40 | 13, 38, 39 | grpnpcan 18582 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Grp ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
41 | 34, 35, 37, 40 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
42 | 41 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) = 𝑎) |
43 | 3 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑆 ∈ LMod) |
44 | 13, 6 | lssss 20113 |
. . . . . . . . . 10
⊢ (𝐾 ∈ 𝑈 → 𝐾 ⊆ 𝐵) |
45 | 8, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ⊆ 𝐵) |
46 | 45 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝐾 ⊆ 𝐵) |
47 | 27 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝐷 ⊆ 𝐵) |
48 | | eqcom 2745 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ (𝐹‘𝑎) = (𝐹‘𝑏)) |
49 | | lmghm 20208 |
. . . . . . . . . . . . 13
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
50 | 1, 49 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
51 | 50 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
52 | 13, 5, 4, 39 | ghmeqker 18776 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
53 | 51, 35, 37, 52 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑎) = (𝐹‘𝑏) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
54 | 48, 53 | syl5bb 282 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ (𝑎(-g‘𝑆)𝑏) ∈ 𝐾)) |
55 | 54 | biimpa 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → (𝑎(-g‘𝑆)𝑏) ∈ 𝐾) |
56 | | simplrr 774 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑏 ∈ 𝐷) |
57 | 13, 38, 10 | lsmelvalix 19161 |
. . . . . . . 8
⊢ (((𝑆 ∈ LMod ∧ 𝐾 ⊆ 𝐵 ∧ 𝐷 ⊆ 𝐵) ∧ ((𝑎(-g‘𝑆)𝑏) ∈ 𝐾 ∧ 𝑏 ∈ 𝐷)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) ∈ (𝐾 ⊕ 𝐷)) |
58 | 43, 46, 47, 55, 56, 57 | syl32anc 1376 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → ((𝑎(-g‘𝑆)𝑏)(+g‘𝑆)𝑏) ∈ (𝐾 ⊕ 𝐷)) |
59 | 42, 58 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) ∧ (𝐹‘𝑏) = (𝐹‘𝑎)) → 𝑎 ∈ (𝐾 ⊕ 𝐷)) |
60 | 59 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐷)) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
61 | 60 | anassrs 467 |
. . . 4
⊢ (((𝜑 ∧ 𝑎 ∈ 𝐵) ∧ 𝑏 ∈ 𝐷) → ((𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
62 | 61 | rexlimdva 3212 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → (∃𝑏 ∈ 𝐷 (𝐹‘𝑏) = (𝐹‘𝑎) → 𝑎 ∈ (𝐾 ⊕ 𝐷))) |
63 | 31, 62 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → 𝑎 ∈ (𝐾 ⊕ 𝐷)) |
64 | 15, 63 | eqelssd 3938 |
1
⊢ (𝜑 → (𝐾 ⊕ 𝐷) = 𝐵) |