Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   GIF version

Theorem kercvrlsm 43074
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u 𝑈 = (LSubSp‘𝑆)
kercvrlsm.p = (LSSum‘𝑆)
kercvrlsm.z 0 = (0g𝑇)
kercvrlsm.k 𝐾 = (𝐹 “ { 0 })
kercvrlsm.b 𝐵 = (Base‘𝑆)
kercvrlsm.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
kercvrlsm.d (𝜑𝐷𝑈)
kercvrlsm.cv (𝜑 → (𝐹𝐷) = ran 𝐹)
Assertion
Ref Expression
kercvrlsm (𝜑 → (𝐾 𝐷) = 𝐵)

Proof of Theorem kercvrlsm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmhmlmod1 20996 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑆 ∈ LMod)
4 kercvrlsm.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5 kercvrlsm.z . . . . . 6 0 = (0g𝑇)
6 kercvrlsm.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
74, 5, 6lmhmkerlss 21014 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾𝑈)
81, 7syl 17 . . . 4 (𝜑𝐾𝑈)
9 kercvrlsm.d . . . 4 (𝜑𝐷𝑈)
10 kercvrlsm.p . . . . 5 = (LSSum‘𝑆)
116, 10lsmcl 21046 . . . 4 ((𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈) → (𝐾 𝐷) ∈ 𝑈)
123, 8, 9, 11syl3anc 1373 . . 3 (𝜑 → (𝐾 𝐷) ∈ 𝑈)
13 kercvrlsm.b . . . 4 𝐵 = (Base‘𝑆)
1413, 6lssss 20898 . . 3 ((𝐾 𝐷) ∈ 𝑈 → (𝐾 𝐷) ⊆ 𝐵)
1512, 14syl 17 . 2 (𝜑 → (𝐾 𝐷) ⊆ 𝐵)
16 eqid 2736 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
1713, 16lmhmf 20997 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
181, 17syl 17 . . . . . . 7 (𝜑𝐹:𝐵⟶(Base‘𝑇))
1918ffnd 6712 . . . . . 6 (𝜑𝐹 Fn 𝐵)
20 fnfvelrn 7075 . . . . . 6 ((𝐹 Fn 𝐵𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
2119, 20sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
22 kercvrlsm.cv . . . . . 6 (𝜑 → (𝐹𝐷) = ran 𝐹)
2322adantr 480 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝐷) = ran 𝐹)
2421, 23eleqtrrd 2838 . . . 4 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ (𝐹𝐷))
2519adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐹 Fn 𝐵)
2613, 6lssss 20898 . . . . . . 7 (𝐷𝑈𝐷𝐵)
279, 26syl 17 . . . . . 6 (𝜑𝐷𝐵)
2827adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐷𝐵)
29 fvelimab 6956 . . . . 5 ((𝐹 Fn 𝐵𝐷𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3025, 28, 29syl2anc 584 . . . 4 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3124, 30mpbid 232 . . 3 ((𝜑𝑎𝐵) → ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎))
32 lmodgrp 20829 . . . . . . . . . . 11 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
333, 32syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
3433adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑆 ∈ Grp)
35 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑎𝐵)
3627sselda 3963 . . . . . . . . . 10 ((𝜑𝑏𝐷) → 𝑏𝐵)
3736adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑏𝐵)
38 eqid 2736 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
39 eqid 2736 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
4013, 38, 39grpnpcan 19020 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4134, 35, 37, 40syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4241adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
433ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑆 ∈ LMod)
4413, 6lssss 20898 . . . . . . . . . 10 (𝐾𝑈𝐾𝐵)
458, 44syl 17 . . . . . . . . 9 (𝜑𝐾𝐵)
4645ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐾𝐵)
4727ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐷𝐵)
48 eqcom 2743 . . . . . . . . . 10 ((𝐹𝑏) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑏))
49 lmghm 20994 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5150adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5213, 5, 4, 39ghmeqker 19231 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎𝐵𝑏𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5351, 35, 37, 52syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5448, 53bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5554biimpa 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (𝑎(-g𝑆)𝑏) ∈ 𝐾)
56 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑏𝐷)
5713, 38, 10lsmelvalix 19627 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵) ∧ ((𝑎(-g𝑆)𝑏) ∈ 𝐾𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5843, 46, 47, 55, 56, 57syl32anc 1380 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5942, 58eqeltrrd 2836 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑎 ∈ (𝐾 𝐷))
6059ex 412 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6160anassrs 467 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐷) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6261rexlimdva 3142 . . 3 ((𝜑𝑎𝐵) → (∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6331, 62mpd 15 . 2 ((𝜑𝑎𝐵) → 𝑎 ∈ (𝐾 𝐷))
6415, 63eqelssd 3985 1 (𝜑 → (𝐾 𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931  {csn 4606  ccnv 5658  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Grpcgrp 18921  -gcsg 18923   GrpHom cghm 19200  LSSumclsm 19620  LModclmod 20822  LSubSpclss 20893   LMHom clmhm 20982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lmhm 20985
This theorem is referenced by:  lmhmfgsplit  43077
  Copyright terms: Public domain W3C validator