Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   GIF version

Theorem kercvrlsm 43122
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u 𝑈 = (LSubSp‘𝑆)
kercvrlsm.p = (LSSum‘𝑆)
kercvrlsm.z 0 = (0g𝑇)
kercvrlsm.k 𝐾 = (𝐹 “ { 0 })
kercvrlsm.b 𝐵 = (Base‘𝑆)
kercvrlsm.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
kercvrlsm.d (𝜑𝐷𝑈)
kercvrlsm.cv (𝜑 → (𝐹𝐷) = ran 𝐹)
Assertion
Ref Expression
kercvrlsm (𝜑 → (𝐾 𝐷) = 𝐵)

Proof of Theorem kercvrlsm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmhmlmod1 20968 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑆 ∈ LMod)
4 kercvrlsm.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5 kercvrlsm.z . . . . . 6 0 = (0g𝑇)
6 kercvrlsm.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
74, 5, 6lmhmkerlss 20986 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾𝑈)
81, 7syl 17 . . . 4 (𝜑𝐾𝑈)
9 kercvrlsm.d . . . 4 (𝜑𝐷𝑈)
10 kercvrlsm.p . . . . 5 = (LSSum‘𝑆)
116, 10lsmcl 21018 . . . 4 ((𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈) → (𝐾 𝐷) ∈ 𝑈)
123, 8, 9, 11syl3anc 1373 . . 3 (𝜑 → (𝐾 𝐷) ∈ 𝑈)
13 kercvrlsm.b . . . 4 𝐵 = (Base‘𝑆)
1413, 6lssss 20870 . . 3 ((𝐾 𝐷) ∈ 𝑈 → (𝐾 𝐷) ⊆ 𝐵)
1512, 14syl 17 . 2 (𝜑 → (𝐾 𝐷) ⊆ 𝐵)
16 eqid 2731 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
1713, 16lmhmf 20969 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
181, 17syl 17 . . . . . . 7 (𝜑𝐹:𝐵⟶(Base‘𝑇))
1918ffnd 6652 . . . . . 6 (𝜑𝐹 Fn 𝐵)
20 fnfvelrn 7013 . . . . . 6 ((𝐹 Fn 𝐵𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
2119, 20sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
22 kercvrlsm.cv . . . . . 6 (𝜑 → (𝐹𝐷) = ran 𝐹)
2322adantr 480 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝐷) = ran 𝐹)
2421, 23eleqtrrd 2834 . . . 4 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ (𝐹𝐷))
2519adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐹 Fn 𝐵)
2613, 6lssss 20870 . . . . . . 7 (𝐷𝑈𝐷𝐵)
279, 26syl 17 . . . . . 6 (𝜑𝐷𝐵)
2827adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐷𝐵)
29 fvelimab 6894 . . . . 5 ((𝐹 Fn 𝐵𝐷𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3025, 28, 29syl2anc 584 . . . 4 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3124, 30mpbid 232 . . 3 ((𝜑𝑎𝐵) → ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎))
32 lmodgrp 20801 . . . . . . . . . . 11 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
333, 32syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
3433adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑆 ∈ Grp)
35 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑎𝐵)
3627sselda 3934 . . . . . . . . . 10 ((𝜑𝑏𝐷) → 𝑏𝐵)
3736adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑏𝐵)
38 eqid 2731 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
39 eqid 2731 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
4013, 38, 39grpnpcan 18945 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4134, 35, 37, 40syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4241adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
433ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑆 ∈ LMod)
4413, 6lssss 20870 . . . . . . . . . 10 (𝐾𝑈𝐾𝐵)
458, 44syl 17 . . . . . . . . 9 (𝜑𝐾𝐵)
4645ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐾𝐵)
4727ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐷𝐵)
48 eqcom 2738 . . . . . . . . . 10 ((𝐹𝑏) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑏))
49 lmghm 20966 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5150adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5213, 5, 4, 39ghmeqker 19156 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎𝐵𝑏𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5351, 35, 37, 52syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5448, 53bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5554biimpa 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (𝑎(-g𝑆)𝑏) ∈ 𝐾)
56 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑏𝐷)
5713, 38, 10lsmelvalix 19554 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵) ∧ ((𝑎(-g𝑆)𝑏) ∈ 𝐾𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5843, 46, 47, 55, 56, 57syl32anc 1380 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5942, 58eqeltrrd 2832 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑎 ∈ (𝐾 𝐷))
6059ex 412 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6160anassrs 467 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐷) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6261rexlimdva 3133 . . 3 ((𝜑𝑎𝐵) → (∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6331, 62mpd 15 . 2 ((𝜑𝑎𝐵) → 𝑎 ∈ (𝐾 𝐷))
6415, 63eqelssd 3956 1 (𝜑 → (𝐾 𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3902  {csn 4576  ccnv 5615  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  -gcsg 18848   GrpHom cghm 19125  LSSumclsm 19547  LModclmod 20794  LSubSpclss 20865   LMHom clmhm 20954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19126  df-cntz 19230  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-lmod 20796  df-lss 20866  df-lmhm 20957
This theorem is referenced by:  lmhmfgsplit  43125
  Copyright terms: Public domain W3C validator