Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kercvrlsm Structured version   Visualization version   GIF version

Theorem kercvrlsm 43072
Description: The domain of a linear function is the subspace sum of the kernel and any subspace which covers the range. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
kercvrlsm.u 𝑈 = (LSubSp‘𝑆)
kercvrlsm.p = (LSSum‘𝑆)
kercvrlsm.z 0 = (0g𝑇)
kercvrlsm.k 𝐾 = (𝐹 “ { 0 })
kercvrlsm.b 𝐵 = (Base‘𝑆)
kercvrlsm.f (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
kercvrlsm.d (𝜑𝐷𝑈)
kercvrlsm.cv (𝜑 → (𝐹𝐷) = ran 𝐹)
Assertion
Ref Expression
kercvrlsm (𝜑 → (𝐾 𝐷) = 𝐵)

Proof of Theorem kercvrlsm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kercvrlsm.f . . . . 5 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
2 lmhmlmod1 21050 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
31, 2syl 17 . . . 4 (𝜑𝑆 ∈ LMod)
4 kercvrlsm.k . . . . . 6 𝐾 = (𝐹 “ { 0 })
5 kercvrlsm.z . . . . . 6 0 = (0g𝑇)
6 kercvrlsm.u . . . . . 6 𝑈 = (LSubSp‘𝑆)
74, 5, 6lmhmkerlss 21068 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐾𝑈)
81, 7syl 17 . . . 4 (𝜑𝐾𝑈)
9 kercvrlsm.d . . . 4 (𝜑𝐷𝑈)
10 kercvrlsm.p . . . . 5 = (LSSum‘𝑆)
116, 10lsmcl 21100 . . . 4 ((𝑆 ∈ LMod ∧ 𝐾𝑈𝐷𝑈) → (𝐾 𝐷) ∈ 𝑈)
123, 8, 9, 11syl3anc 1370 . . 3 (𝜑 → (𝐾 𝐷) ∈ 𝑈)
13 kercvrlsm.b . . . 4 𝐵 = (Base‘𝑆)
1413, 6lssss 20952 . . 3 ((𝐾 𝐷) ∈ 𝑈 → (𝐾 𝐷) ⊆ 𝐵)
1512, 14syl 17 . 2 (𝜑 → (𝐾 𝐷) ⊆ 𝐵)
16 eqid 2735 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
1713, 16lmhmf 21051 . . . . . . . 8 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
181, 17syl 17 . . . . . . 7 (𝜑𝐹:𝐵⟶(Base‘𝑇))
1918ffnd 6738 . . . . . 6 (𝜑𝐹 Fn 𝐵)
20 fnfvelrn 7100 . . . . . 6 ((𝐹 Fn 𝐵𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
2119, 20sylan 580 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ ran 𝐹)
22 kercvrlsm.cv . . . . . 6 (𝜑 → (𝐹𝐷) = ran 𝐹)
2322adantr 480 . . . . 5 ((𝜑𝑎𝐵) → (𝐹𝐷) = ran 𝐹)
2421, 23eleqtrrd 2842 . . . 4 ((𝜑𝑎𝐵) → (𝐹𝑎) ∈ (𝐹𝐷))
2519adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐹 Fn 𝐵)
2613, 6lssss 20952 . . . . . . 7 (𝐷𝑈𝐷𝐵)
279, 26syl 17 . . . . . 6 (𝜑𝐷𝐵)
2827adantr 480 . . . . 5 ((𝜑𝑎𝐵) → 𝐷𝐵)
29 fvelimab 6981 . . . . 5 ((𝐹 Fn 𝐵𝐷𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3025, 28, 29syl2anc 584 . . . 4 ((𝜑𝑎𝐵) → ((𝐹𝑎) ∈ (𝐹𝐷) ↔ ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎)))
3124, 30mpbid 232 . . 3 ((𝜑𝑎𝐵) → ∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎))
32 lmodgrp 20882 . . . . . . . . . . 11 (𝑆 ∈ LMod → 𝑆 ∈ Grp)
333, 32syl 17 . . . . . . . . . 10 (𝜑𝑆 ∈ Grp)
3433adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑆 ∈ Grp)
35 simprl 771 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑎𝐵)
3627sselda 3995 . . . . . . . . . 10 ((𝜑𝑏𝐷) → 𝑏𝐵)
3736adantrl 716 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝑏𝐵)
38 eqid 2735 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
39 eqid 2735 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
4013, 38, 39grpnpcan 19063 . . . . . . . . 9 ((𝑆 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4134, 35, 37, 40syl3anc 1370 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
4241adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) = 𝑎)
433ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑆 ∈ LMod)
4413, 6lssss 20952 . . . . . . . . . 10 (𝐾𝑈𝐾𝐵)
458, 44syl 17 . . . . . . . . 9 (𝜑𝐾𝐵)
4645ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐾𝐵)
4727ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝐷𝐵)
48 eqcom 2742 . . . . . . . . . 10 ((𝐹𝑏) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑏))
49 lmghm 21048 . . . . . . . . . . . . 13 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
501, 49syl 17 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5150adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
5213, 5, 4, 39ghmeqker 19274 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑎𝐵𝑏𝐵) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5351, 35, 37, 52syl3anc 1370 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑎) = (𝐹𝑏) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5448, 53bitrid 283 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) ↔ (𝑎(-g𝑆)𝑏) ∈ 𝐾))
5554biimpa 476 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → (𝑎(-g𝑆)𝑏) ∈ 𝐾)
56 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑏𝐷)
5713, 38, 10lsmelvalix 19674 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝐾𝐵𝐷𝐵) ∧ ((𝑎(-g𝑆)𝑏) ∈ 𝐾𝑏𝐷)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5843, 46, 47, 55, 56, 57syl32anc 1377 . . . . . . 7 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → ((𝑎(-g𝑆)𝑏)(+g𝑆)𝑏) ∈ (𝐾 𝐷))
5942, 58eqeltrrd 2840 . . . . . 6 (((𝜑 ∧ (𝑎𝐵𝑏𝐷)) ∧ (𝐹𝑏) = (𝐹𝑎)) → 𝑎 ∈ (𝐾 𝐷))
6059ex 412 . . . . 5 ((𝜑 ∧ (𝑎𝐵𝑏𝐷)) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6160anassrs 467 . . . 4 (((𝜑𝑎𝐵) ∧ 𝑏𝐷) → ((𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6261rexlimdva 3153 . . 3 ((𝜑𝑎𝐵) → (∃𝑏𝐷 (𝐹𝑏) = (𝐹𝑎) → 𝑎 ∈ (𝐾 𝐷)))
6331, 62mpd 15 . 2 ((𝜑𝑎𝐵) → 𝑎 ∈ (𝐾 𝐷))
6415, 63eqelssd 4017 1 (𝜑 → (𝐾 𝐷) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963  {csn 4631  ccnv 5688  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  -gcsg 18966   GrpHom cghm 19243  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947   LMHom clmhm 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lmhm 21039
This theorem is referenced by:  lmhmfgsplit  43075
  Copyright terms: Public domain W3C validator