![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioodvbdlimc2 | Structured version Visualization version GIF version |
Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
ioodvbdlimc2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioodvbdlimc2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ioodvbdlimc2.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
ioodvbdlimc2.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
ioodvbdlimc2.dvbd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
Ref | Expression |
---|---|
ioodvbdlimc2 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioodvbdlimc2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
3 | ioodvbdlimc2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
5 | simpr 478 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
6 | ioodvbdlimc2.f | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
7 | 6 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
8 | ioodvbdlimc2.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
9 | 8 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
10 | ioodvbdlimc2.dvbd | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) | |
11 | 10 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
12 | 2fveq3 6416 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) | |
13 | 12 | cbvmptv 4943 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
14 | 13 | rneqi 5555 | . . . . 5 ⊢ ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
15 | 14 | supeq1i 8595 | . . . 4 ⊢ sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
16 | eqid 2799 | . . . 4 ⊢ ((⌊‘(1 / (𝐵 − 𝐴))) + 1) = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) | |
17 | oveq2 6886 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗)) | |
18 | 17 | oveq2d 6894 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 − (1 / 𝑘)) = (𝐵 − (1 / 𝑗))) |
19 | 18 | fveq2d 6415 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝐵 − (1 / 𝑘))) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
20 | 19 | cbvmptv 4943 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘)))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) |
21 | 18 | cbvmptv 4943 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑘))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑗))) |
22 | eqid 2799 | . . . 4 ⊢ if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) = if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) | |
23 | biid 253 | . . . 4 ⊢ (((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) ↔ ((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) | |
24 | 2, 4, 5, 7, 9, 11, 15, 16, 20, 21, 22, 23 | ioodvbdlimc2lem 40893 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))) ∈ (𝐹 limℂ 𝐵)) |
25 | 24 | ne0d 4122 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) |
26 | ax-resscn 10281 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
28 | 6, 27 | fssd 6270 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
29 | 28 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
30 | simpr 478 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
31 | 1 | rexrd 10378 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
32 | 31 | adantr 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) |
33 | 3 | rexrd 10378 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
34 | 33 | adantr 473 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) |
35 | ioo0 12449 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
36 | 32, 34, 35 | syl2anc 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
37 | 30, 36 | mpbird 249 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
38 | 37 | feq2d 6242 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ)) |
39 | 29, 38 | mpbid 224 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:∅⟶ℂ) |
40 | 3 | recnd 10357 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
41 | 40 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℂ) |
42 | 39, 41 | limcdm0 40594 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) = ℂ) |
43 | 0cn 10320 | . . . . 5 ⊢ 0 ∈ ℂ | |
44 | 43 | ne0ii 4124 | . . . 4 ⊢ ℂ ≠ ∅ |
45 | 44 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ℂ ≠ ∅) |
46 | 42, 45 | eqnetrd 3038 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) ≠ ∅) |
47 | 25, 46, 1, 3 | ltlecasei 10435 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ∃wrex 3090 ⊆ wss 3769 ∅c0 4115 ifcif 4277 class class class wbr 4843 ↦ cmpt 4922 dom cdm 5312 ran crn 5313 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 supcsup 8588 ℂcc 10222 ℝcr 10223 0cc0 10224 1c1 10225 + caddc 10227 ℝ*cxr 10362 < clt 10363 ≤ cle 10364 − cmin 10556 / cdiv 10976 2c2 11368 ℤ≥cuz 11930 ℝ+crp 12074 (,)cioo 12424 ⌊cfl 12846 abscabs 14315 lim supclsp 14542 limℂ climc 23967 D cdv 23968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-submnd 17651 df-mulg 17857 df-cntz 18062 df-cmn 18510 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-lp 21269 df-perf 21270 df-cn 21360 df-cnp 21361 df-haus 21448 df-cmp 21519 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cncf 23009 df-limc 23971 df-dv 23972 |
This theorem is referenced by: fourierdlem94 41160 fourierdlem113 41179 |
Copyright terms: Public domain | W3C validator |