| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioodvbdlimc2 | Structured version Visualization version GIF version | ||
| Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| ioodvbdlimc2.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ioodvbdlimc2.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ioodvbdlimc2.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| ioodvbdlimc2.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| ioodvbdlimc2.dvbd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| Ref | Expression |
|---|---|
| ioodvbdlimc2 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioodvbdlimc2.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 3 | ioodvbdlimc2.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 6 | ioodvbdlimc2.f | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 8 | ioodvbdlimc2.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 10 | ioodvbdlimc2.dvbd | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| 12 | 2fveq3 6886 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) | |
| 13 | 12 | cbvmptv 5230 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 14 | 13 | rneqi 5922 | . . . . 5 ⊢ ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 15 | 14 | supeq1i 9464 | . . . 4 ⊢ sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 16 | eqid 2736 | . . . 4 ⊢ ((⌊‘(1 / (𝐵 − 𝐴))) + 1) = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) | |
| 17 | oveq2 7418 | . . . . . . 7 ⊢ (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗)) | |
| 18 | 17 | oveq2d 7426 | . . . . . 6 ⊢ (𝑘 = 𝑗 → (𝐵 − (1 / 𝑘)) = (𝐵 − (1 / 𝑗))) |
| 19 | 18 | fveq2d 6885 | . . . . 5 ⊢ (𝑘 = 𝑗 → (𝐹‘(𝐵 − (1 / 𝑘))) = (𝐹‘(𝐵 − (1 / 𝑗)))) |
| 20 | 19 | cbvmptv 5230 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘)))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑗)))) |
| 21 | 18 | cbvmptv 5230 | . . . 4 ⊢ (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑘))) = (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑗))) |
| 22 | eqid 2736 | . . . 4 ⊢ if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) = if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) | |
| 23 | biid 261 | . . . 4 ⊢ (((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗)) ↔ ((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐵)) < (1 / 𝑗))) | |
| 24 | 2, 4, 5, 7, 9, 11, 15, 16, 20, 21, 22, 23 | ioodvbdlimc2lem 45930 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (lim sup‘(𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))) ∈ (𝐹 limℂ 𝐵)) |
| 25 | 24 | ne0d 4322 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) |
| 26 | ax-resscn 11191 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 28 | 6, 27 | fssd 6728 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 30 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
| 31 | 1 | rexrd 11290 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 32 | 31 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) |
| 33 | 3 | rexrd 11290 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) |
| 35 | ioo0 13392 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
| 36 | 32, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 37 | 30, 36 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
| 38 | 37 | feq2d 6697 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ)) |
| 39 | 29, 38 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:∅⟶ℂ) |
| 40 | 3 | recnd 11268 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℂ) |
| 42 | 39, 41 | limcdm0 45614 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) = ℂ) |
| 43 | 0cn 11232 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 44 | 43 | ne0ii 4324 | . . . 4 ⊢ ℂ ≠ ∅ |
| 45 | 44 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ℂ ≠ ∅) |
| 46 | 42, 45 | eqnetrd 3000 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐵) ≠ ∅) |
| 47 | 25, 46, 1, 3 | ltlecasei 11348 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 ⊆ wss 3931 ∅c0 4313 ifcif 4505 class class class wbr 5124 ↦ cmpt 5206 dom cdm 5659 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 supcsup 9457 ℂcc 11132 ℝcr 11133 0cc0 11134 1c1 11135 + caddc 11137 ℝ*cxr 11273 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 2c2 12300 ℤ≥cuz 12857 ℝ+crp 13013 (,)cioo 13367 ⌊cfl 13812 abscabs 15258 lim supclsp 15491 limℂ climc 25820 D cdv 25821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-xms 24264 df-ms 24265 df-tms 24266 df-cncf 24827 df-limc 25824 df-dv 25825 |
| This theorem is referenced by: fourierdlem94 46196 fourierdlem113 46215 |
| Copyright terms: Public domain | W3C validator |