Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ioodvbdlimc2 Structured version   Visualization version   GIF version

Theorem ioodvbdlimc2 45461
Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
ioodvbdlimc2.a (𝜑𝐴 ∈ ℝ)
ioodvbdlimc2.b (𝜑𝐵 ∈ ℝ)
ioodvbdlimc2.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
ioodvbdlimc2.dmdv (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
ioodvbdlimc2.dvbd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
Assertion
Ref Expression
ioodvbdlimc2 (𝜑 → (𝐹 lim 𝐵) ≠ ∅)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ioodvbdlimc2
Dummy variables 𝑗 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioodvbdlimc2.a . . . . 5 (𝜑𝐴 ∈ ℝ)
21adantr 479 . . . 4 ((𝜑𝐴 < 𝐵) → 𝐴 ∈ ℝ)
3 ioodvbdlimc2.b . . . . 5 (𝜑𝐵 ∈ ℝ)
43adantr 479 . . . 4 ((𝜑𝐴 < 𝐵) → 𝐵 ∈ ℝ)
5 simpr 483 . . . 4 ((𝜑𝐴 < 𝐵) → 𝐴 < 𝐵)
6 ioodvbdlimc2.f . . . . 5 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
76adantr 479 . . . 4 ((𝜑𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
8 ioodvbdlimc2.dmdv . . . . 5 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
98adantr 479 . . . 4 ((𝜑𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
10 ioodvbdlimc2.dvbd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
1110adantr 479 . . . 4 ((𝜑𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦)
12 2fveq3 6901 . . . . . . 7 (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥)))
1312cbvmptv 5262 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1413rneqi 5939 . . . . 5 ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥)))
1514supeq1i 9472 . . . 4 sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )
16 eqid 2725 . . . 4 ((⌊‘(1 / (𝐵𝐴))) + 1) = ((⌊‘(1 / (𝐵𝐴))) + 1)
17 oveq2 7427 . . . . . . 7 (𝑘 = 𝑗 → (1 / 𝑘) = (1 / 𝑗))
1817oveq2d 7435 . . . . . 6 (𝑘 = 𝑗 → (𝐵 − (1 / 𝑘)) = (𝐵 − (1 / 𝑗)))
1918fveq2d 6900 . . . . 5 (𝑘 = 𝑗 → (𝐹‘(𝐵 − (1 / 𝑘))) = (𝐹‘(𝐵 − (1 / 𝑗))))
2019cbvmptv 5262 . . . 4 (𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘)))) = (𝑗 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑗))))
2118cbvmptv 5262 . . . 4 (𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑘))) = (𝑗 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐵 − (1 / 𝑗)))
22 eqid 2725 . . . 4 if(((⌊‘(1 / (𝐵𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵𝐴))) + 1)) = if(((⌊‘(1 / (𝐵𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵𝐴))) + 1))
23 biid 260 . . . 4 (((((((𝜑𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ‘if(((⌊‘(1 / (𝐵𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)) ↔ ((((((𝜑𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ (ℤ‘if(((⌊‘(1 / (𝐵𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵𝐴))) + 1)))) ∧ (abs‘(((𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))‘𝑗) − (lim sup‘(𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧𝐵)) < (1 / 𝑗)))
242, 4, 5, 7, 9, 11, 15, 16, 20, 21, 22, 23ioodvbdlimc2lem 45460 . . 3 ((𝜑𝐴 < 𝐵) → (lim sup‘(𝑘 ∈ (ℤ‘((⌊‘(1 / (𝐵𝐴))) + 1)) ↦ (𝐹‘(𝐵 − (1 / 𝑘))))) ∈ (𝐹 lim 𝐵))
2524ne0d 4335 . 2 ((𝜑𝐴 < 𝐵) → (𝐹 lim 𝐵) ≠ ∅)
26 ax-resscn 11197 . . . . . . . 8 ℝ ⊆ ℂ
2726a1i 11 . . . . . . 7 (𝜑 → ℝ ⊆ ℂ)
286, 27fssd 6740 . . . . . 6 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
2928adantr 479 . . . . 5 ((𝜑𝐵𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
30 simpr 483 . . . . . . 7 ((𝜑𝐵𝐴) → 𝐵𝐴)
311rexrd 11296 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ*)
3231adantr 479 . . . . . . . 8 ((𝜑𝐵𝐴) → 𝐴 ∈ ℝ*)
333rexrd 11296 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
3433adantr 479 . . . . . . . 8 ((𝜑𝐵𝐴) → 𝐵 ∈ ℝ*)
35 ioo0 13384 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3632, 34, 35syl2anc 582 . . . . . . 7 ((𝜑𝐵𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
3730, 36mpbird 256 . . . . . 6 ((𝜑𝐵𝐴) → (𝐴(,)𝐵) = ∅)
3837feq2d 6709 . . . . 5 ((𝜑𝐵𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ))
3929, 38mpbid 231 . . . 4 ((𝜑𝐵𝐴) → 𝐹:∅⟶ℂ)
403recnd 11274 . . . . 5 (𝜑𝐵 ∈ ℂ)
4140adantr 479 . . . 4 ((𝜑𝐵𝐴) → 𝐵 ∈ ℂ)
4239, 41limcdm0 45144 . . 3 ((𝜑𝐵𝐴) → (𝐹 lim 𝐵) = ℂ)
43 0cn 11238 . . . . 5 0 ∈ ℂ
4443ne0ii 4337 . . . 4 ℂ ≠ ∅
4544a1i 11 . . 3 ((𝜑𝐵𝐴) → ℂ ≠ ∅)
4642, 45eqnetrd 2997 . 2 ((𝜑𝐵𝐴) → (𝐹 lim 𝐵) ≠ ∅)
4725, 46, 1, 3ltlecasei 11354 1 (𝜑 → (𝐹 lim 𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  wss 3944  c0 4322  ifcif 4530   class class class wbr 5149  cmpt 5232  dom cdm 5678  ran crn 5679  wf 6545  cfv 6549  (class class class)co 7419  supcsup 9465  cc 11138  cr 11139  0cc0 11140  1c1 11141   + caddc 11143  *cxr 11279   < clt 11280  cle 11281  cmin 11476   / cdiv 11903  2c2 12300  cuz 12855  +crp 13009  (,)cioo 13359  cfl 13791  abscabs 15217  lim supclsp 15450   lim climc 25835   D cdv 25836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-fl 13793  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-limsup 15451  df-clim 15468  df-rlim 15469  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-mulg 19032  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-ntr 22968  df-cls 22969  df-nei 23046  df-lp 23084  df-perf 23085  df-cn 23175  df-cnp 23176  df-haus 23263  df-cmp 23335  df-tx 23510  df-hmeo 23703  df-fil 23794  df-fm 23886  df-flim 23887  df-flf 23888  df-xms 24270  df-ms 24271  df-tms 24272  df-cncf 24842  df-limc 25839  df-dv 25840
This theorem is referenced by:  fourierdlem94  45726  fourierdlem113  45745
  Copyright terms: Public domain W3C validator