| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ioodvbdlimc1 | Structured version Visualization version GIF version | ||
| Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| ioodvbdlimc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ioodvbdlimc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ioodvbdlimc1.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| ioodvbdlimc1.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| ioodvbdlimc1.dvbd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| Ref | Expression |
|---|---|
| ioodvbdlimc1 | ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioodvbdlimc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
| 3 | ioodvbdlimc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 6 | ioodvbdlimc1.f | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 8 | ioodvbdlimc1.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 10 | ioodvbdlimc1.dvbd | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| 12 | 2fveq3 6845 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) | |
| 13 | 12 | cbvmptv 5206 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 14 | 13 | rneqi 5890 | . . . . 5 ⊢ ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 15 | 14 | supeq1i 9374 | . . . 4 ⊢ sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 16 | eqid 2729 | . . . 4 ⊢ ((⌊‘(1 / (𝐵 − 𝐴))) + 1) = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) | |
| 17 | oveq2 7377 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘)) | |
| 18 | 17 | oveq2d 7385 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐴 + (1 / 𝑗)) = (𝐴 + (1 / 𝑘))) |
| 19 | 18 | fveq2d 6844 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝐴 + (1 / 𝑗))) = (𝐹‘(𝐴 + (1 / 𝑘)))) |
| 20 | 19 | cbvmptv 5206 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) = (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑘)))) |
| 21 | 18 | cbvmptv 5206 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐴 + (1 / 𝑗))) = (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐴 + (1 / 𝑘))) |
| 22 | eqid 2729 | . . . 4 ⊢ if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) = if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) | |
| 23 | biid 261 | . . . 4 ⊢ (((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))‘𝑘) − (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑘)) ↔ ((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))‘𝑘) − (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑘))) | |
| 24 | 2, 4, 5, 7, 9, 11, 15, 16, 20, 21, 22, 23 | ioodvbdlimc1lem2 45923 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))) ∈ (𝐹 limℂ 𝐴)) |
| 25 | 24 | ne0d 4301 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐹 limℂ 𝐴) ≠ ∅) |
| 26 | ax-resscn 11101 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 28 | 6, 27 | fssd 6687 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 30 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
| 31 | 1 | rexrd 11200 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 32 | 31 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) |
| 33 | 3 | rexrd 11200 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 34 | 33 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) |
| 35 | ioo0 13307 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
| 36 | 32, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 37 | 30, 36 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
| 38 | 37 | feq2d 6654 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ)) |
| 39 | 29, 38 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:∅⟶ℂ) |
| 40 | 1 | recnd 11178 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 41 | 40 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 42 | 39, 41 | limcdm0 45609 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐴) = ℂ) |
| 43 | 0cn 11142 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 44 | 43 | ne0ii 4303 | . . . 4 ⊢ ℂ ≠ ∅ |
| 45 | 44 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ℂ ≠ ∅) |
| 46 | 42, 45 | eqnetrd 2992 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐴) ≠ ∅) |
| 47 | 25, 46, 1, 3 | ltlecasei 11258 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 dom cdm 5631 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 supcsup 9367 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 − cmin 11381 / cdiv 11811 2c2 12217 ℤ≥cuz 12769 ℝ+crp 12927 (,)cioo 13282 ⌊cfl 13728 abscabs 15176 lim supclsp 15412 limℂ climc 25796 D cdv 25797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 df-rlim 15431 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-rest 17361 df-topn 17362 df-0g 17380 df-gsum 17381 df-topgen 17382 df-pt 17383 df-prds 17386 df-xrs 17441 df-qtop 17446 df-imas 17447 df-xps 17449 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-submnd 18693 df-mulg 18982 df-cntz 19231 df-cmn 19696 df-psmet 21288 df-xmet 21289 df-met 21290 df-bl 21291 df-mopn 21292 df-fbas 21293 df-fg 21294 df-cnfld 21297 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22866 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-lp 23056 df-perf 23057 df-cn 23147 df-cnp 23148 df-haus 23235 df-cmp 23307 df-tx 23482 df-hmeo 23675 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-limc 25800 df-dv 25801 |
| This theorem is referenced by: fourierdlem94 46191 fourierdlem113 46210 |
| Copyright terms: Public domain | W3C validator |