![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ioodvbdlimc1 | Structured version Visualization version GIF version |
Description: A real function with bounded derivative, has a limit at the upper bound of an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
ioodvbdlimc1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioodvbdlimc1.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ioodvbdlimc1.f | ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
ioodvbdlimc1.dmdv | ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
ioodvbdlimc1.dvbd | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
Ref | Expression |
---|---|
ioodvbdlimc1 | ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioodvbdlimc1.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
3 | ioodvbdlimc1.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
5 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
6 | ioodvbdlimc1.f | . . . . 5 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
8 | ioodvbdlimc1.dmdv | . . . . 5 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) | |
9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
10 | ioodvbdlimc1.dvbd | . . . . 5 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
12 | 2fveq3 6844 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) | |
13 | 12 | cbvmptv 5216 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
14 | 13 | rneqi 5890 | . . . . 5 ⊢ ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
15 | 14 | supeq1i 9341 | . . . 4 ⊢ sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
16 | eqid 2737 | . . . 4 ⊢ ((⌊‘(1 / (𝐵 − 𝐴))) + 1) = ((⌊‘(1 / (𝐵 − 𝐴))) + 1) | |
17 | oveq2 7359 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (1 / 𝑗) = (1 / 𝑘)) | |
18 | 17 | oveq2d 7367 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝐴 + (1 / 𝑗)) = (𝐴 + (1 / 𝑘))) |
19 | 18 | fveq2d 6843 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝐹‘(𝐴 + (1 / 𝑗))) = (𝐹‘(𝐴 + (1 / 𝑘)))) |
20 | 19 | cbvmptv 5216 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗)))) = (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑘)))) |
21 | 18 | cbvmptv 5216 | . . . 4 ⊢ (𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐴 + (1 / 𝑗))) = (𝑘 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐴 + (1 / 𝑘))) |
22 | eqid 2737 | . . . 4 ⊢ if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) = if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)) | |
23 | biid 260 | . . . 4 ⊢ (((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))‘𝑘) − (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑘)) ↔ ((((((𝜑 ∧ 𝐴 < 𝐵) ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ (ℤ≥‘if(((⌊‘(1 / (𝐵 − 𝐴))) + 1) ≤ ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(sup(ran (𝑦 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑦))), ℝ, < ) / (𝑥 / 2))) + 1), ((⌊‘(1 / (𝐵 − 𝐴))) + 1)))) ∧ (abs‘(((𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))‘𝑘) − (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))))) < (𝑥 / 2)) ∧ 𝑧 ∈ (𝐴(,)𝐵)) ∧ (abs‘(𝑧 − 𝐴)) < (1 / 𝑘))) | |
24 | 2, 4, 5, 7, 9, 11, 15, 16, 20, 21, 22, 23 | ioodvbdlimc1lem2 44067 | . . 3 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (lim sup‘(𝑗 ∈ (ℤ≥‘((⌊‘(1 / (𝐵 − 𝐴))) + 1)) ↦ (𝐹‘(𝐴 + (1 / 𝑗))))) ∈ (𝐹 limℂ 𝐴)) |
25 | 24 | ne0d 4293 | . 2 ⊢ ((𝜑 ∧ 𝐴 < 𝐵) → (𝐹 limℂ 𝐴) ≠ ∅) |
26 | ax-resscn 11066 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℝ ⊆ ℂ) |
28 | 6, 27 | fssd 6683 | . . . . . 6 ⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
29 | 28 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
30 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
31 | 1 | rexrd 11163 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
32 | 31 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℝ*) |
33 | 3 | rexrd 11163 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
34 | 33 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐵 ∈ ℝ*) |
35 | ioo0 13243 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
36 | 32, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
37 | 30, 36 | mpbird 256 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
38 | 37 | feq2d 6651 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹:(𝐴(,)𝐵)⟶ℂ ↔ 𝐹:∅⟶ℂ)) |
39 | 29, 38 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐹:∅⟶ℂ) |
40 | 1 | recnd 11141 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
41 | 40 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → 𝐴 ∈ ℂ) |
42 | 39, 41 | limcdm0 43753 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐴) = ℂ) |
43 | 0cn 11105 | . . . . 5 ⊢ 0 ∈ ℂ | |
44 | 43 | ne0ii 4295 | . . . 4 ⊢ ℂ ≠ ∅ |
45 | 44 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → ℂ ≠ ∅) |
46 | 42, 45 | eqnetrd 3009 | . 2 ⊢ ((𝜑 ∧ 𝐵 ≤ 𝐴) → (𝐹 limℂ 𝐴) ≠ ∅) |
47 | 25, 46, 1, 3 | ltlecasei 11221 | 1 ⊢ (𝜑 → (𝐹 limℂ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ⊆ wss 3908 ∅c0 4280 ifcif 4484 class class class wbr 5103 ↦ cmpt 5186 dom cdm 5631 ran crn 5632 ⟶wf 6489 ‘cfv 6493 (class class class)co 7351 supcsup 9334 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 ℝ*cxr 11146 < clt 11147 ≤ cle 11148 − cmin 11343 / cdiv 11770 2c2 12166 ℤ≥cuz 12721 ℝ+crp 12869 (,)cioo 13218 ⌊cfl 13649 abscabs 15078 lim supclsp 15311 limℂ climc 25177 D cdv 25178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-iin 4955 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-isom 6502 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-of 7609 df-om 7795 df-1st 7913 df-2nd 7914 df-supp 8085 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-2o 8405 df-er 8606 df-map 8725 df-pm 8726 df-ixp 8794 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-fsupp 9264 df-fi 9305 df-sup 9336 df-inf 9337 df-oi 9404 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-div 11771 df-nn 12112 df-2 12174 df-3 12175 df-4 12176 df-5 12177 df-6 12178 df-7 12179 df-8 12180 df-9 12181 df-n0 12372 df-z 12458 df-dec 12577 df-uz 12722 df-q 12828 df-rp 12870 df-xneg 12987 df-xadd 12988 df-xmul 12989 df-ioo 13222 df-ico 13224 df-icc 13225 df-fz 13379 df-fzo 13522 df-fl 13651 df-seq 13861 df-exp 13922 df-hash 14184 df-cj 14943 df-re 14944 df-im 14945 df-sqrt 15079 df-abs 15080 df-limsup 15312 df-clim 15329 df-rlim 15330 df-struct 16978 df-sets 16995 df-slot 17013 df-ndx 17025 df-base 17043 df-ress 17072 df-plusg 17105 df-mulr 17106 df-starv 17107 df-sca 17108 df-vsca 17109 df-ip 17110 df-tset 17111 df-ple 17112 df-ds 17114 df-unif 17115 df-hom 17116 df-cco 17117 df-rest 17263 df-topn 17264 df-0g 17282 df-gsum 17283 df-topgen 17284 df-pt 17285 df-prds 17288 df-xrs 17343 df-qtop 17348 df-imas 17349 df-xps 17351 df-mre 17425 df-mrc 17426 df-acs 17428 df-mgm 18456 df-sgrp 18505 df-mnd 18516 df-submnd 18561 df-mulg 18831 df-cntz 19055 df-cmn 19522 df-psmet 20740 df-xmet 20741 df-met 20742 df-bl 20743 df-mopn 20744 df-fbas 20745 df-fg 20746 df-cnfld 20749 df-top 22194 df-topon 22211 df-topsp 22233 df-bases 22247 df-cld 22321 df-ntr 22322 df-cls 22323 df-nei 22400 df-lp 22438 df-perf 22439 df-cn 22529 df-cnp 22530 df-haus 22617 df-cmp 22689 df-tx 22864 df-hmeo 23057 df-fil 23148 df-fm 23240 df-flim 23241 df-flf 23242 df-xms 23624 df-ms 23625 df-tms 23626 df-cncf 24192 df-limc 25181 df-dv 25182 |
This theorem is referenced by: fourierdlem94 44335 fourierdlem113 44354 |
Copyright terms: Public domain | W3C validator |