Mathbox for metakunt < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  metakunt9 Structured version   Visualization version   GIF version

Theorem metakunt9 39377
 Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.)
Hypotheses
Ref Expression
metakunt9.1 (𝜑𝑀 ∈ ℕ)
metakunt9.2 (𝜑𝐼 ∈ ℕ)
metakunt9.3 (𝜑𝐼𝑀)
metakunt9.4 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
metakunt9.5 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
metakunt9.6 (𝜑𝑋 ∈ (1...𝑀))
Assertion
Ref Expression
metakunt9 (𝜑 → (𝐶‘(𝐴𝑋)) = 𝑋)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐼   𝑦,𝐼   𝑥,𝑀   𝑦,𝑀   𝑥,𝑋   𝑦,𝑋   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem metakunt9
StepHypRef Expression
1 metakunt9.1 . . 3 (𝜑𝑀 ∈ ℕ)
2 metakunt9.2 . . 3 (𝜑𝐼 ∈ ℕ)
3 metakunt9.3 . . 3 (𝜑𝐼𝑀)
4 metakunt9.4 . . 3 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1))))
5 metakunt9.5 . . 3 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1))))
6 metakunt9.6 . . 3 (𝜑𝑋 ∈ (1...𝑀))
71, 2, 3, 4, 5, 6metakunt8 39376 . 2 ((𝜑𝐼 < 𝑋) → (𝐶‘(𝐴𝑋)) = 𝑋)
8 elfznn 12934 . . . . . . 7 (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ)
96, 8syl 17 . . . . . 6 (𝜑𝑋 ∈ ℕ)
109nnred 11643 . . . . 5 (𝜑𝑋 ∈ ℝ)
112nnred 11643 . . . . 5 (𝜑𝐼 ∈ ℝ)
1210, 11leloed 10775 . . . 4 (𝜑 → (𝑋𝐼 ↔ (𝑋 < 𝐼𝑋 = 𝐼)))
131, 2, 3, 4, 5, 6metakunt6 39374 . . . . . 6 ((𝜑𝑋 < 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
141, 2, 3, 4, 5, 6metakunt5 39373 . . . . . 6 ((𝜑𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
1513, 14jaodan 955 . . . . 5 ((𝜑 ∧ (𝑋 < 𝐼𝑋 = 𝐼)) → (𝐶‘(𝐴𝑋)) = 𝑋)
1615ex 416 . . . 4 (𝜑 → ((𝑋 < 𝐼𝑋 = 𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋))
1712, 16sylbid 243 . . 3 (𝜑 → (𝑋𝐼 → (𝐶‘(𝐴𝑋)) = 𝑋))
1817imp 410 . 2 ((𝜑𝑋𝐼) → (𝐶‘(𝐴𝑋)) = 𝑋)
197, 18, 11, 10ltlecasei 10740 1 (𝜑 → (𝐶‘(𝐴𝑋)) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 844   = wceq 1538   ∈ wcel 2111  ifcif 4425   class class class wbr 5031   ↦ cmpt 5111  ‘cfv 6325  (class class class)co 7136  1c1 10530   + caddc 10532   < clt 10667   ≤ cle 10668   − cmin 10862  ℕcn 11628  ...cfz 12888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889 This theorem is referenced by:  metakunt14  39382
 Copyright terms: Public domain W3C validator