![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > metakunt9 | Structured version Visualization version GIF version |
Description: C is the left inverse for A. (Contributed by metakunt, 24-May-2024.) |
Ref | Expression |
---|---|
metakunt9.1 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
metakunt9.2 | ⊢ (𝜑 → 𝐼 ∈ ℕ) |
metakunt9.3 | ⊢ (𝜑 → 𝐼 ≤ 𝑀) |
metakunt9.4 | ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) |
metakunt9.5 | ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) |
metakunt9.6 | ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) |
Ref | Expression |
---|---|
metakunt9 | ⊢ (𝜑 → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt9.1 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | metakunt9.2 | . . 3 ⊢ (𝜑 → 𝐼 ∈ ℕ) | |
3 | metakunt9.3 | . . 3 ⊢ (𝜑 → 𝐼 ≤ 𝑀) | |
4 | metakunt9.4 | . . 3 ⊢ 𝐴 = (𝑥 ∈ (1...𝑀) ↦ if(𝑥 = 𝐼, 𝑀, if(𝑥 < 𝐼, 𝑥, (𝑥 − 1)))) | |
5 | metakunt9.5 | . . 3 ⊢ 𝐶 = (𝑦 ∈ (1...𝑀) ↦ if(𝑦 = 𝑀, 𝐼, if(𝑦 < 𝐼, 𝑦, (𝑦 + 1)))) | |
6 | metakunt9.6 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (1...𝑀)) | |
7 | 1, 2, 3, 4, 5, 6 | metakunt8 41553 | . 2 ⊢ ((𝜑 ∧ 𝐼 < 𝑋) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
8 | elfznn 13536 | . . . . . . 7 ⊢ (𝑋 ∈ (1...𝑀) → 𝑋 ∈ ℕ) | |
9 | 6, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ ℕ) |
10 | 9 | nnred 12231 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℝ) |
11 | 2 | nnred 12231 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℝ) |
12 | 10, 11 | leloed 11361 | . . . 4 ⊢ (𝜑 → (𝑋 ≤ 𝐼 ↔ (𝑋 < 𝐼 ∨ 𝑋 = 𝐼))) |
13 | 1, 2, 3, 4, 5, 6 | metakunt6 41551 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 < 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
14 | 1, 2, 3, 4, 5, 6 | metakunt5 41550 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
15 | 13, 14 | jaodan 954 | . . . . 5 ⊢ ((𝜑 ∧ (𝑋 < 𝐼 ∨ 𝑋 = 𝐼)) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
16 | 15 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑋 < 𝐼 ∨ 𝑋 = 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋)) |
17 | 12, 16 | sylbid 239 | . . 3 ⊢ (𝜑 → (𝑋 ≤ 𝐼 → (𝐶‘(𝐴‘𝑋)) = 𝑋)) |
18 | 17 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≤ 𝐼) → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
19 | 7, 18, 11, 10 | ltlecasei 11326 | 1 ⊢ (𝜑 → (𝐶‘(𝐴‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ifcif 4523 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 1c1 11113 + caddc 11115 < clt 11252 ≤ cle 11253 − cmin 11448 ℕcn 12216 ...cfz 13490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 |
This theorem is referenced by: metakunt14 41559 |
Copyright terms: Public domain | W3C validator |