![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioovolcl | Structured version Visualization version GIF version |
Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
ioovolcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl 25415 | . . 3 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
2 | mblvol 25380 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) | |
3 | 1, 2 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) |
4 | ltle 11298 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
6 | 5 | imdistani 568 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴)) |
7 | rexr 11256 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
8 | rexr 11256 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
9 | ioo0 13345 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
10 | 7, 8, 9 | syl2an 595 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
11 | 10 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
12 | fveq2 6881 | . . . . . 6 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = (vol*‘∅)) | |
13 | ovol0 25343 | . . . . . 6 ⊢ (vol*‘∅) = 0 | |
14 | 12, 13 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = 0) |
15 | 0re 11212 | . . . . 5 ⊢ 0 ∈ ℝ | |
16 | 14, 15 | eqeltrdi 2833 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
17 | 6, 11, 16 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
18 | ovolioo 25418 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
19 | 18 | 3expa 1115 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
20 | resubcl 11520 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
21 | 20 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
22 | 21 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
23 | 19, 22 | eqeltrd 2825 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
24 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
25 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
26 | 17, 23, 24, 25 | ltlecasei 11318 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
27 | 3, 26 | eqeltrd 2825 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∅c0 4314 class class class wbr 5138 dom cdm 5666 ‘cfv 6533 (class class class)co 7401 ℝcr 11104 0cc0 11105 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 − cmin 11440 (,)cioo 13320 vol*covol 25312 volcvol 25313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-rest 17366 df-topgen 17387 df-psmet 21219 df-xmet 21220 df-met 21221 df-bl 21222 df-mopn 21223 df-top 22717 df-topon 22734 df-bases 22770 df-cmp 23212 df-ovol 25314 df-vol 25315 |
This theorem is referenced by: itgexpif 34073 cnioobibld 42418 volioc 45139 itgiccshift 45147 itgperiod 45148 volico 45150 wallispilem2 45233 sqwvfoura 45395 |
Copyright terms: Public domain | W3C validator |