MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioovolcl Structured version   Visualization version   GIF version

Theorem ioovolcl 24734
Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
ioovolcl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)

Proof of Theorem ioovolcl
StepHypRef Expression
1 ioombl 24729 . . 3 (𝐴(,)𝐵) ∈ dom vol
2 mblvol 24694 . . 3 ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)))
31, 2mp1i 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵)))
4 ltle 11063 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
54ancoms 459 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴𝐵𝐴))
65imdistani 569 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴))
7 rexr 11021 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
8 rexr 11021 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
9 ioo0 13104 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
107, 8, 9syl2an 596 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
1110biimpar 478 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵𝐴) → (𝐴(,)𝐵) = ∅)
12 fveq2 6774 . . . . . 6 ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = (vol*‘∅))
13 ovol0 24657 . . . . . 6 (vol*‘∅) = 0
1412, 13eqtrdi 2794 . . . . 5 ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = 0)
15 0re 10977 . . . . 5 0 ∈ ℝ
1614, 15eqeltrdi 2847 . . . 4 ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
176, 11, 163syl 18 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
18 ovolioo 24732 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))
19183expa 1117 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵𝐴))
20 resubcl 11285 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
2120ancoms 459 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
2221adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (𝐵𝐴) ∈ ℝ)
2319, 22eqeltrd 2839 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
24 simpr 485 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
25 simpl 483 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2617, 23, 24, 25ltlecasei 11083 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
273, 26eqeltrd 2839 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  c0 4256   class class class wbr 5074  dom cdm 5589  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  *cxr 11008   < clt 11009  cle 11010  cmin 11205  (,)cioo 13079  vol*covol 24626  volcvol 24627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-ovol 24628  df-vol 24629
This theorem is referenced by:  itgexpif  32586  cnioobibld  41045  volioc  43513  itgiccshift  43521  itgperiod  43522  volico  43524  wallispilem2  43607  sqwvfoura  43769
  Copyright terms: Public domain W3C validator