| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioovolcl | Structured version Visualization version GIF version | ||
| Description: An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| ioovolcl | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl 25466 | . . 3 ⊢ (𝐴(,)𝐵) ∈ dom vol | |
| 2 | mblvol 25431 | . . 3 ⊢ ((𝐴(,)𝐵) ∈ dom vol → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) | |
| 3 | 1, 2 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) = (vol*‘(𝐴(,)𝐵))) |
| 4 | ltle 11262 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) | |
| 5 | 4 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 → 𝐵 ≤ 𝐴)) |
| 6 | 5 | imdistani 568 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴)) |
| 7 | rexr 11220 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 8 | rexr 11220 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 9 | ioo0 13331 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
| 10 | 7, 8, 9 | syl2an 596 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
| 11 | 10 | biimpar 477 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 ≤ 𝐴) → (𝐴(,)𝐵) = ∅) |
| 12 | fveq2 6858 | . . . . . 6 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = (vol*‘∅)) | |
| 13 | ovol0 25394 | . . . . . 6 ⊢ (vol*‘∅) = 0 | |
| 14 | 12, 13 | eqtrdi 2780 | . . . . 5 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) = 0) |
| 15 | 0re 11176 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 16 | 14, 15 | eqeltrdi 2836 | . . . 4 ⊢ ((𝐴(,)𝐵) = ∅ → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 17 | 6, 11, 16 | 3syl 18 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐵 < 𝐴) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 18 | ovolioo 25469 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
| 19 | 18 | 3expa 1118 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
| 20 | resubcl 11486 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) | |
| 21 | 20 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 − 𝐴) ∈ ℝ) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) ∈ ℝ) |
| 23 | 19, 22 | eqeltrd 2828 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 24 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ) | |
| 25 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 26 | 17, 23, 24, 25 | ltlecasei 11282 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ) |
| 27 | 3, 26 | eqeltrd 2828 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 (,)cioo 13306 vol*covol 25363 volcvol 25364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fi 9362 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-rest 17385 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cmp 23274 df-ovol 25365 df-vol 25366 |
| This theorem is referenced by: itgexpif 34597 cnioobibld 43203 volioc 45970 itgiccshift 45978 itgperiod 45979 volico 45981 wallispilem2 46064 sqwvfoura 46226 |
| Copyright terms: Public domain | W3C validator |