MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord Structured version   Visualization version   GIF version

Theorem tanord 26480
Description: The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanord ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 fveq2 6840 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6840 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6840 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 ioossre 13344 . . 3 (-(π / 2)(,)(π / 2)) ⊆ ℝ
6 elioore 13312 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℝ)
76recnd 11178 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℂ)
86rered 15166 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) = 𝑥)
9 id 22 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
108, 9eqeltrd 2828 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2)))
11 cosne0 26471 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑥) ≠ 0)
127, 10, 11syl2anc 584 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑥) ≠ 0)
136, 12retancld 16089 . . . 4 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
1413adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
1563ad2ant1 1133 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
1716recnd 11178 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
1817negnegd 11500 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → --𝑥 = 𝑥)
1918fveq2d 6844 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = (tan‘𝑥))
2017negcld 11496 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -𝑥 ∈ ℂ)
21 cosneg 16091 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (cos‘-𝑥) = (cos‘𝑥))
2217, 21syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) = (cos‘𝑥))
23 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
2423, 12syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘𝑥) ≠ 0)
2522, 24eqnetrd 2992 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) ≠ 0)
26 tanneg 16092 . . . . . . . . 9 ((-𝑥 ∈ ℂ ∧ (cos‘-𝑥) ≠ 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2720, 25, 26syl2anc 584 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2819, 27eqtr3d 2766 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) = -(tan‘-𝑥))
2915adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ ℝ)
3029renegcld 11581 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ ℝ)
3125adantrr 717 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘-𝑥) ≠ 0)
3230, 31retancld 16089 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ)
3332renegcld 11581 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) ∈ ℝ)
34 0red 11153 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 ∈ ℝ)
35 simp2 1137 . . . . . . . . . . . . 13 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
365, 35sselid 3941 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ ℝ)
38 simpl2 1193 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
39 elioore 13312 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℝ)
4039recnd 11178 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℂ)
4139rered 15166 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) = 𝑦)
42 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
4341, 42eqeltrd 2828 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2)))
44 cosne0 26471 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑦) ≠ 0)
4540, 43, 44syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑦) ≠ 0)
4638, 45syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘𝑦) ≠ 0)
4737, 46retancld 16089 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ)
48 simprl 770 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 < 0)
4929lt0neg1d 11723 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (𝑥 < 0 ↔ 0 < -𝑥))
5048, 49mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < -𝑥)
51 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
52 eliooord 13342 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5453simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(π / 2) < 𝑥)
55 halfpire 26406 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
56 ltnegcon1 11655 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5755, 29, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5854, 57mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 < (π / 2))
59 0xr 11197 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6055rexri 11208 . . . . . . . . . . . . . . 15 (π / 2) ∈ ℝ*
61 elioo2 13323 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2))))
6259, 60, 61mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2)))
6330, 50, 58, 62syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ (0(,)(π / 2)))
64 tanrpcl 26446 . . . . . . . . . . . . 13 (-𝑥 ∈ (0(,)(π / 2)) → (tan‘-𝑥) ∈ ℝ+)
6563, 64syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ+)
6665rpgt0d 12974 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘-𝑥))
6732lt0neg2d 11724 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (0 < (tan‘-𝑥) ↔ -(tan‘-𝑥) < 0))
6866, 67mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < 0)
69 simprr 772 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < 𝑦)
70 eliooord 13342 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7138, 70syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7271simprd 495 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 < (π / 2))
73 elioo2 13323 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
7459, 60, 73mp2an 692 . . . . . . . . . . . . 13 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
7537, 69, 72, 74syl3anbrc 1344 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (0(,)(π / 2)))
76 tanrpcl 26446 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) → (tan‘𝑦) ∈ ℝ+)
7775, 76syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ+)
7877rpgt0d 12974 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘𝑦))
7933, 34, 47, 68, 78lttrd 11311 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < (tan‘𝑦))
8079anassrs 467 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 0 < 𝑦) → -(tan‘-𝑥) < (tan‘𝑦))
81 simpl3 1194 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 𝑦)
8215adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ ℝ)
8336adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℝ)
8482, 83ltnegd 11732 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 𝑦 ↔ -𝑦 < -𝑥))
8581, 84mpbid 232 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < -𝑥)
8683renegcld 11581 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℝ)
87 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ≤ 0)
8883le0neg1d 11725 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
8987, 88mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑦)
90 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
9190, 70syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
9291simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑦)
93 ltnegcon1 11655 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9455, 83, 93sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9592, 94mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < (π / 2))
96 0re 11152 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97 elico2 13347 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2))))
9896, 60, 97mp2an 692 . . . . . . . . . . . . . 14 (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2)))
9986, 89, 95, 98syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ (0[,)(π / 2)))
10082renegcld 11581 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ ℝ)
101 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
102 0red 11153 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
103 ltletr 11242 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
10415, 36, 102, 103syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
105101, 104mpand 695 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ≤ 0 → 𝑥 < 0))
106105imp 406 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 0)
107 ltle 11238 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 < 0 → 𝑥 ≤ 0))
10882, 96, 107sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 0 → 𝑥 ≤ 0))
109106, 108mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ≤ 0)
11082le0neg1d 11725 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 ≤ 0 ↔ 0 ≤ -𝑥))
111109, 110mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑥)
112 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
113112, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
114113simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑥)
11555, 82, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
116114, 115mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 < (π / 2))
117 elico2 13347 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2))))
11896, 60, 117mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2)))
119100, 111, 116, 118syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ (0[,)(π / 2)))
120 tanord1 26479 . . . . . . . . . . . . 13 ((-𝑦 ∈ (0[,)(π / 2)) ∧ -𝑥 ∈ (0[,)(π / 2))) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12199, 119, 120syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12285, 121mpbid 232 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) < (tan‘-𝑥))
12383recnd 11178 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℂ)
124 cosneg 16091 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (cos‘-𝑦) = (cos‘𝑦))
125123, 124syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) = (cos‘𝑦))
12690, 45syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘𝑦) ≠ 0)
127125, 126eqnetrd 2992 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) ≠ 0)
12886, 127retancld 16089 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) ∈ ℝ)
129106, 25syldan 591 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑥) ≠ 0)
130100, 129retancld 16089 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑥) ∈ ℝ)
131128, 130ltnegd 11732 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → ((tan‘-𝑦) < (tan‘-𝑥) ↔ -(tan‘-𝑥) < -(tan‘-𝑦)))
132122, 131mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < -(tan‘-𝑦))
133123negnegd 11500 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → --𝑦 = 𝑦)
134133fveq2d 6844 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = (tan‘𝑦))
135123negcld 11496 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℂ)
136 tanneg 16092 . . . . . . . . . . . 12 ((-𝑦 ∈ ℂ ∧ (cos‘-𝑦) ≠ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
137135, 127, 136syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
138134, 137eqtr3d 2766 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘𝑦) = -(tan‘-𝑦))
139132, 138breqtrrd 5130 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
140139adantlr 715 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
141 0red 11153 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 0 ∈ ℝ)
142 simpl2 1193 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1435, 142sselid 3941 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ ℝ)
14480, 140, 141, 143ltlecasei 11258 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -(tan‘-𝑥) < (tan‘𝑦))
14528, 144eqbrtrd 5124 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) < (tan‘𝑦))
146 simpl3 1194 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < 𝑦)
14715adantr 480 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ)
148 simpr 484 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑥)
149 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
150149, 52syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
151150simprd 495 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < (π / 2))
152 elico2 13347 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
15396, 60, 152mp2an 692 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
154147, 148, 151, 153syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)(π / 2)))
155 simpl2 1193 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1565, 155sselid 3941 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ ℝ)
157 0red 11153 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ∈ ℝ)
158147, 156, 146ltled 11298 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥𝑦)
159157, 147, 156, 148, 158letrd 11307 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑦)
160155, 70syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
161160simprd 495 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 < (π / 2))
162 elico2 13347 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
16396, 60, 162mp2an 692 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
164156, 159, 161, 163syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (0[,)(π / 2)))
165 tanord1 26479 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
166154, 164, 165syl2anc 584 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
167146, 166mpbid 232 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (tan‘𝑥) < (tan‘𝑦))
168145, 167, 15, 102ltlecasei 11258 . . . . 5 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1691683expia 1121 . . . 4 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
170169adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1712, 3, 4, 5, 14, 170ltord1 11680 . 2 ((⊤ ∧ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1721, 171mpan 690 1 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  *cxr 11183   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  2c2 12217  +crp 12927  (,)cioo 13282  [,)cico 13284  cre 15039  cosccos 16006  tanctan 16007  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  atanlogsublem  26858  atanord  26870  basellem4  27027
  Copyright terms: Public domain W3C validator