MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord Structured version   Visualization version   GIF version

Theorem tanord 25282
Description: The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanord ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1546 . 2
2 fveq2 6674 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6674 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6674 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 ioossre 12882 . . 3 (-(π / 2)(,)(π / 2)) ⊆ ℝ
6 elioore 12851 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℝ)
76recnd 10747 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℂ)
86rered 14673 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) = 𝑥)
9 id 22 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
108, 9eqeltrd 2833 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2)))
11 cosne0 25273 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑥) ≠ 0)
127, 10, 11syl2anc 587 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑥) ≠ 0)
136, 12retancld 15590 . . . 4 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
1413adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
1563ad2ant1 1134 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1615adantr 484 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
1716recnd 10747 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
1817negnegd 11066 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → --𝑥 = 𝑥)
1918fveq2d 6678 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = (tan‘𝑥))
2017negcld 11062 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -𝑥 ∈ ℂ)
21 cosneg 15592 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (cos‘-𝑥) = (cos‘𝑥))
2217, 21syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) = (cos‘𝑥))
23 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
2423, 12syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘𝑥) ≠ 0)
2522, 24eqnetrd 3001 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) ≠ 0)
26 tanneg 15593 . . . . . . . . 9 ((-𝑥 ∈ ℂ ∧ (cos‘-𝑥) ≠ 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2720, 25, 26syl2anc 587 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2819, 27eqtr3d 2775 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) = -(tan‘-𝑥))
2915adantr 484 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ ℝ)
3029renegcld 11145 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ ℝ)
3125adantrr 717 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘-𝑥) ≠ 0)
3230, 31retancld 15590 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ)
3332renegcld 11145 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) ∈ ℝ)
34 0red 10722 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 ∈ ℝ)
35 simp2 1138 . . . . . . . . . . . . 13 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
365, 35sseldi 3875 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736adantr 484 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ ℝ)
38 simpl2 1193 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
39 elioore 12851 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℝ)
4039recnd 10747 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℂ)
4139rered 14673 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) = 𝑦)
42 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
4341, 42eqeltrd 2833 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2)))
44 cosne0 25273 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑦) ≠ 0)
4540, 43, 44syl2anc 587 . . . . . . . . . . . 12 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑦) ≠ 0)
4638, 45syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘𝑦) ≠ 0)
4737, 46retancld 15590 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ)
48 simprl 771 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 < 0)
4929lt0neg1d 11287 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (𝑥 < 0 ↔ 0 < -𝑥))
5048, 49mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < -𝑥)
51 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
52 eliooord 12880 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5453simpld 498 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(π / 2) < 𝑥)
55 halfpire 25209 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
56 ltnegcon1 11219 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5755, 29, 56sylancr 590 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5854, 57mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 < (π / 2))
59 0xr 10766 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6055rexri 10777 . . . . . . . . . . . . . . 15 (π / 2) ∈ ℝ*
61 elioo2 12862 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2))))
6259, 60, 61mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2)))
6330, 50, 58, 62syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ (0(,)(π / 2)))
64 tanrpcl 25249 . . . . . . . . . . . . 13 (-𝑥 ∈ (0(,)(π / 2)) → (tan‘-𝑥) ∈ ℝ+)
6563, 64syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ+)
6665rpgt0d 12517 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘-𝑥))
6732lt0neg2d 11288 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (0 < (tan‘-𝑥) ↔ -(tan‘-𝑥) < 0))
6866, 67mpbid 235 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < 0)
69 simprr 773 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < 𝑦)
70 eliooord 12880 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7138, 70syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7271simprd 499 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 < (π / 2))
73 elioo2 12862 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
7459, 60, 73mp2an 692 . . . . . . . . . . . . 13 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
7537, 69, 72, 74syl3anbrc 1344 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (0(,)(π / 2)))
76 tanrpcl 25249 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) → (tan‘𝑦) ∈ ℝ+)
7775, 76syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ+)
7877rpgt0d 12517 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘𝑦))
7933, 34, 47, 68, 78lttrd 10879 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < (tan‘𝑦))
8079anassrs 471 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 0 < 𝑦) → -(tan‘-𝑥) < (tan‘𝑦))
81 simpl3 1194 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 𝑦)
8215adantr 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ ℝ)
8336adantr 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℝ)
8482, 83ltnegd 11296 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 𝑦 ↔ -𝑦 < -𝑥))
8581, 84mpbid 235 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < -𝑥)
8683renegcld 11145 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℝ)
87 simpr 488 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ≤ 0)
8883le0neg1d 11289 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
8987, 88mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑦)
90 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
9190, 70syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
9291simpld 498 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑦)
93 ltnegcon1 11219 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9455, 83, 93sylancr 590 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9592, 94mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < (π / 2))
96 0re 10721 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97 elico2 12885 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2))))
9896, 60, 97mp2an 692 . . . . . . . . . . . . . 14 (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2)))
9986, 89, 95, 98syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ (0[,)(π / 2)))
10082renegcld 11145 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ ℝ)
101 simp3 1139 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
102 0red 10722 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
103 ltletr 10810 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
10415, 36, 102, 103syl3anc 1372 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
105101, 104mpand 695 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ≤ 0 → 𝑥 < 0))
106105imp 410 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 0)
107 ltle 10807 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 < 0 → 𝑥 ≤ 0))
10882, 96, 107sylancl 589 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 0 → 𝑥 ≤ 0))
109106, 108mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ≤ 0)
11082le0neg1d 11289 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 ≤ 0 ↔ 0 ≤ -𝑥))
111109, 110mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑥)
112 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
113112, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
114113simpld 498 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑥)
11555, 82, 56sylancr 590 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
116114, 115mpbid 235 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 < (π / 2))
117 elico2 12885 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2))))
11896, 60, 117mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2)))
119100, 111, 116, 118syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ (0[,)(π / 2)))
120 tanord1 25281 . . . . . . . . . . . . 13 ((-𝑦 ∈ (0[,)(π / 2)) ∧ -𝑥 ∈ (0[,)(π / 2))) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12199, 119, 120syl2anc 587 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12285, 121mpbid 235 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) < (tan‘-𝑥))
12383recnd 10747 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℂ)
124 cosneg 15592 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (cos‘-𝑦) = (cos‘𝑦))
125123, 124syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) = (cos‘𝑦))
12690, 45syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘𝑦) ≠ 0)
127125, 126eqnetrd 3001 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) ≠ 0)
12886, 127retancld 15590 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) ∈ ℝ)
129106, 25syldan 594 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑥) ≠ 0)
130100, 129retancld 15590 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑥) ∈ ℝ)
131128, 130ltnegd 11296 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → ((tan‘-𝑦) < (tan‘-𝑥) ↔ -(tan‘-𝑥) < -(tan‘-𝑦)))
132122, 131mpbid 235 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < -(tan‘-𝑦))
133123negnegd 11066 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → --𝑦 = 𝑦)
134133fveq2d 6678 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = (tan‘𝑦))
135123negcld 11062 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℂ)
136 tanneg 15593 . . . . . . . . . . . 12 ((-𝑦 ∈ ℂ ∧ (cos‘-𝑦) ≠ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
137135, 127, 136syl2anc 587 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
138134, 137eqtr3d 2775 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘𝑦) = -(tan‘-𝑦))
139132, 138breqtrrd 5058 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
140139adantlr 715 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
141 0red 10722 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 0 ∈ ℝ)
142 simpl2 1193 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1435, 142sseldi 3875 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ ℝ)
14480, 140, 141, 143ltlecasei 10826 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -(tan‘-𝑥) < (tan‘𝑦))
14528, 144eqbrtrd 5052 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) < (tan‘𝑦))
146 simpl3 1194 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < 𝑦)
14715adantr 484 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ)
148 simpr 488 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑥)
149 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
150149, 52syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
151150simprd 499 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < (π / 2))
152 elico2 12885 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
15396, 60, 152mp2an 692 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
154147, 148, 151, 153syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)(π / 2)))
155 simpl2 1193 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1565, 155sseldi 3875 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ ℝ)
157 0red 10722 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ∈ ℝ)
158147, 156, 146ltled 10866 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥𝑦)
159157, 147, 156, 148, 158letrd 10875 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑦)
160155, 70syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
161160simprd 499 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 < (π / 2))
162 elico2 12885 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
16396, 60, 162mp2an 692 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
164156, 159, 161, 163syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (0[,)(π / 2)))
165 tanord1 25281 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
166154, 164, 165syl2anc 587 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
167146, 166mpbid 235 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (tan‘𝑥) < (tan‘𝑦))
168145, 167, 15, 102ltlecasei 10826 . . . . 5 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1691683expia 1122 . . . 4 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
170169adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1712, 3, 4, 5, 14, 170ltord1 11244 . 2 ((⊤ ∧ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1721, 171mpan 690 1 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wtru 1543  wcel 2114  wne 2934   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613  cr 10614  0cc0 10615  *cxr 10752   < clt 10753  cle 10754  -cneg 10949   / cdiv 11375  2c2 11771  +crp 12472  (,)cioo 12821  [,)cico 12823  cre 14546  cosccos 15510  tanctan 15511  πcpi 15512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-inf2 9177  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693  ax-addf 10694  ax-mulf 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-se 5484  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-of 7425  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-pm 8440  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-fsupp 8907  df-fi 8948  df-sup 8979  df-inf 8980  df-oi 9047  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-div 11376  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-q 12431  df-rp 12473  df-xneg 12590  df-xadd 12591  df-xmul 12592  df-ioo 12825  df-ioc 12826  df-ico 12827  df-icc 12828  df-fz 12982  df-fzo 13125  df-fl 13253  df-mod 13329  df-seq 13461  df-exp 13522  df-fac 13726  df-bc 13755  df-hash 13783  df-shft 14516  df-cj 14548  df-re 14549  df-im 14550  df-sqrt 14684  df-abs 14685  df-limsup 14918  df-clim 14935  df-rlim 14936  df-sum 15136  df-ef 15513  df-sin 15515  df-cos 15516  df-tan 15517  df-pi 15518  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-starv 16683  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-unif 16691  df-hom 16692  df-cco 16693  df-rest 16799  df-topn 16800  df-0g 16818  df-gsum 16819  df-topgen 16820  df-pt 16821  df-prds 16824  df-xrs 16878  df-qtop 16883  df-imas 16884  df-xps 16886  df-mre 16960  df-mrc 16961  df-acs 16963  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-mulg 18343  df-cntz 18565  df-cmn 19026  df-psmet 20209  df-xmet 20210  df-met 20211  df-bl 20212  df-mopn 20213  df-fbas 20214  df-fg 20215  df-cnfld 20218  df-top 21645  df-topon 21662  df-topsp 21684  df-bases 21697  df-cld 21770  df-ntr 21771  df-cls 21772  df-nei 21849  df-lp 21887  df-perf 21888  df-cn 21978  df-cnp 21979  df-haus 22066  df-tx 22313  df-hmeo 22506  df-fil 22597  df-fm 22689  df-flim 22690  df-flf 22691  df-xms 23073  df-ms 23074  df-tms 23075  df-cncf 23630  df-limc 24618  df-dv 24619
This theorem is referenced by:  atanlogsublem  25653  atanord  25665  basellem4  25821
  Copyright terms: Public domain W3C validator