MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanord Structured version   Visualization version   GIF version

Theorem tanord 26481
Description: The tangent function is strictly increasing on its principal domain. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanord ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))

Proof of Theorem tanord
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1544 . 2
2 fveq2 6840 . . 3 (𝑥 = 𝑦 → (tan‘𝑥) = (tan‘𝑦))
3 fveq2 6840 . . 3 (𝑥 = 𝐴 → (tan‘𝑥) = (tan‘𝐴))
4 fveq2 6840 . . 3 (𝑥 = 𝐵 → (tan‘𝑥) = (tan‘𝐵))
5 ioossre 13346 . . 3 (-(π / 2)(,)(π / 2)) ⊆ ℝ
6 elioore 13314 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℝ)
76recnd 11180 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ ℂ)
86rered 15167 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) = 𝑥)
9 id 22 . . . . . . 7 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
108, 9eqeltrd 2828 . . . . . 6 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2)))
11 cosne0 26472 . . . . . 6 ((𝑥 ∈ ℂ ∧ (ℜ‘𝑥) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑥) ≠ 0)
127, 10, 11syl2anc 584 . . . . 5 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑥) ≠ 0)
136, 12retancld 16090 . . . 4 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (tan‘𝑥) ∈ ℝ)
1413adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (-(π / 2)(,)(π / 2))) → (tan‘𝑥) ∈ ℝ)
1563ad2ant1 1133 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℝ)
1716recnd 11180 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ ℂ)
1817negnegd 11502 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → --𝑥 = 𝑥)
1918fveq2d 6844 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = (tan‘𝑥))
2017negcld 11498 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -𝑥 ∈ ℂ)
21 cosneg 16092 . . . . . . . . . . 11 (𝑥 ∈ ℂ → (cos‘-𝑥) = (cos‘𝑥))
2217, 21syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) = (cos‘𝑥))
23 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
2423, 12syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘𝑥) ≠ 0)
2522, 24eqnetrd 2992 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (cos‘-𝑥) ≠ 0)
26 tanneg 16093 . . . . . . . . 9 ((-𝑥 ∈ ℂ ∧ (cos‘-𝑥) ≠ 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2720, 25, 26syl2anc 584 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘--𝑥) = -(tan‘-𝑥))
2819, 27eqtr3d 2766 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) = -(tan‘-𝑥))
2915adantr 480 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ ℝ)
3029renegcld 11583 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ ℝ)
3125adantrr 717 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘-𝑥) ≠ 0)
3230, 31retancld 16090 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ)
3332renegcld 11583 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) ∈ ℝ)
34 0red 11155 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 ∈ ℝ)
35 simp2 1137 . . . . . . . . . . . . 13 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
365, 35sselid 3941 . . . . . . . . . . . 12 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
3736adantr 480 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ ℝ)
38 simpl2 1193 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
39 elioore 13314 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℝ)
4039recnd 11180 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ ℂ)
4139rered 15167 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) = 𝑦)
42 id 22 . . . . . . . . . . . . . 14 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
4341, 42eqeltrd 2828 . . . . . . . . . . . . 13 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2)))
44 cosne0 26472 . . . . . . . . . . . . 13 ((𝑦 ∈ ℂ ∧ (ℜ‘𝑦) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝑦) ≠ 0)
4540, 43, 44syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (cos‘𝑦) ≠ 0)
4638, 45syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (cos‘𝑦) ≠ 0)
4737, 46retancld 16090 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ)
48 simprl 770 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 < 0)
4929lt0neg1d 11725 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (𝑥 < 0 ↔ 0 < -𝑥))
5048, 49mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < -𝑥)
51 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
52 eliooord 13344 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5351, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
5453simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(π / 2) < 𝑥)
55 halfpire 26407 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
56 ltnegcon1 11657 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5755, 29, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
5854, 57mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 < (π / 2))
59 0xr 11199 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
6055rexri 11210 . . . . . . . . . . . . . . 15 (π / 2) ∈ ℝ*
61 elioo2 13325 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2))))
6259, 60, 61mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0(,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 < -𝑥 ∧ -𝑥 < (π / 2)))
6330, 50, 58, 62syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -𝑥 ∈ (0(,)(π / 2)))
64 tanrpcl 26447 . . . . . . . . . . . . 13 (-𝑥 ∈ (0(,)(π / 2)) → (tan‘-𝑥) ∈ ℝ+)
6563, 64syl 17 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘-𝑥) ∈ ℝ+)
6665rpgt0d 12976 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘-𝑥))
6732lt0neg2d 11726 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (0 < (tan‘-𝑥) ↔ -(tan‘-𝑥) < 0))
6866, 67mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < 0)
69 simprr 772 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < 𝑦)
70 eliooord 13344 . . . . . . . . . . . . . . 15 (𝑦 ∈ (-(π / 2)(,)(π / 2)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7138, 70syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
7271simprd 495 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 < (π / 2))
73 elioo2 13325 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2))))
7459, 60, 73mp2an 692 . . . . . . . . . . . . 13 (𝑦 ∈ (0(,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 < 𝑦𝑦 < (π / 2)))
7537, 69, 72, 74syl3anbrc 1344 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 𝑦 ∈ (0(,)(π / 2)))
76 tanrpcl 26447 . . . . . . . . . . . 12 (𝑦 ∈ (0(,)(π / 2)) → (tan‘𝑦) ∈ ℝ+)
7775, 76syl 17 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → (tan‘𝑦) ∈ ℝ+)
7877rpgt0d 12976 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → 0 < (tan‘𝑦))
7933, 34, 47, 68, 78lttrd 11313 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ (𝑥 < 0 ∧ 0 < 𝑦)) → -(tan‘-𝑥) < (tan‘𝑦))
8079anassrs 467 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 0 < 𝑦) → -(tan‘-𝑥) < (tan‘𝑦))
81 simpl3 1194 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 𝑦)
8215adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ ℝ)
8336adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℝ)
8482, 83ltnegd 11734 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 𝑦 ↔ -𝑦 < -𝑥))
8581, 84mpbid 232 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < -𝑥)
8683renegcld 11583 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℝ)
87 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ≤ 0)
8883le0neg1d 11727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑦 ≤ 0 ↔ 0 ≤ -𝑦))
8987, 88mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑦)
90 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
9190, 70syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
9291simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑦)
93 ltnegcon1 11657 . . . . . . . . . . . . . . . 16 (((π / 2) ∈ ℝ ∧ 𝑦 ∈ ℝ) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9455, 83, 93sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑦 ↔ -𝑦 < (π / 2)))
9592, 94mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 < (π / 2))
96 0re 11154 . . . . . . . . . . . . . . 15 0 ∈ ℝ
97 elico2 13349 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2))))
9896, 60, 97mp2an 692 . . . . . . . . . . . . . 14 (-𝑦 ∈ (0[,)(π / 2)) ↔ (-𝑦 ∈ ℝ ∧ 0 ≤ -𝑦 ∧ -𝑦 < (π / 2)))
9986, 89, 95, 98syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ (0[,)(π / 2)))
10082renegcld 11583 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ ℝ)
101 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
102 0red 11155 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
103 ltletr 11244 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
10415, 36, 102, 103syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → ((𝑥 < 𝑦𝑦 ≤ 0) → 𝑥 < 0))
105101, 104mpand 695 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (𝑦 ≤ 0 → 𝑥 < 0))
106105imp 406 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 < 0)
107 ltle 11240 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑥 < 0 → 𝑥 ≤ 0))
10882, 96, 107sylancl 586 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 < 0 → 𝑥 ≤ 0))
109106, 108mpd 15 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ≤ 0)
11082le0neg1d 11727 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (𝑥 ≤ 0 ↔ 0 ≤ -𝑥))
111109, 110mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 0 ≤ -𝑥)
112 simpl1 1192 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
113112, 52syl 17 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
114113simpld 494 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(π / 2) < 𝑥)
11555, 82, 56sylancr 587 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-(π / 2) < 𝑥 ↔ -𝑥 < (π / 2)))
116114, 115mpbid 232 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 < (π / 2))
117 elico2 13349 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2))))
11896, 60, 117mp2an 692 . . . . . . . . . . . . . 14 (-𝑥 ∈ (0[,)(π / 2)) ↔ (-𝑥 ∈ ℝ ∧ 0 ≤ -𝑥 ∧ -𝑥 < (π / 2)))
119100, 111, 116, 118syl3anbrc 1344 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑥 ∈ (0[,)(π / 2)))
120 tanord1 26480 . . . . . . . . . . . . 13 ((-𝑦 ∈ (0[,)(π / 2)) ∧ -𝑥 ∈ (0[,)(π / 2))) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12199, 119, 120syl2anc 584 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (-𝑦 < -𝑥 ↔ (tan‘-𝑦) < (tan‘-𝑥)))
12285, 121mpbid 232 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) < (tan‘-𝑥))
12383recnd 11180 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → 𝑦 ∈ ℂ)
124 cosneg 16092 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℂ → (cos‘-𝑦) = (cos‘𝑦))
125123, 124syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) = (cos‘𝑦))
12690, 45syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘𝑦) ≠ 0)
127125, 126eqnetrd 2992 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑦) ≠ 0)
12886, 127retancld 16090 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑦) ∈ ℝ)
129106, 25syldan 591 . . . . . . . . . . . . 13 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (cos‘-𝑥) ≠ 0)
130100, 129retancld 16090 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘-𝑥) ∈ ℝ)
131128, 130ltnegd 11734 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → ((tan‘-𝑦) < (tan‘-𝑥) ↔ -(tan‘-𝑥) < -(tan‘-𝑦)))
132122, 131mpbid 232 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < -(tan‘-𝑦))
133123negnegd 11502 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → --𝑦 = 𝑦)
134133fveq2d 6844 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = (tan‘𝑦))
135123negcld 11498 . . . . . . . . . . . 12 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -𝑦 ∈ ℂ)
136 tanneg 16093 . . . . . . . . . . . 12 ((-𝑦 ∈ ℂ ∧ (cos‘-𝑦) ≠ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
137135, 127, 136syl2anc 584 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘--𝑦) = -(tan‘-𝑦))
138134, 137eqtr3d 2766 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → (tan‘𝑦) = -(tan‘-𝑦))
139132, 138breqtrrd 5130 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
140139adantlr 715 . . . . . . . 8 ((((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) ∧ 𝑦 ≤ 0) → -(tan‘-𝑥) < (tan‘𝑦))
141 0red 11155 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 0 ∈ ℝ)
142 simpl2 1193 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1435, 142sselid 3941 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → 𝑦 ∈ ℝ)
14480, 140, 141, 143ltlecasei 11260 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → -(tan‘-𝑥) < (tan‘𝑦))
14528, 144eqbrtrd 5124 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 𝑥 < 0) → (tan‘𝑥) < (tan‘𝑦))
146 simpl3 1194 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < 𝑦)
14715adantr 480 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ ℝ)
148 simpr 484 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑥)
149 simpl1 1192 . . . . . . . . . . 11 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (-(π / 2)(,)(π / 2)))
150149, 52syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑥𝑥 < (π / 2)))
151150simprd 495 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 < (π / 2))
152 elico2 13349 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2))))
15396, 60, 152mp2an 692 . . . . . . . . 9 (𝑥 ∈ (0[,)(π / 2)) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < (π / 2)))
154147, 148, 151, 153syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥 ∈ (0[,)(π / 2)))
155 simpl2 1193 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (-(π / 2)(,)(π / 2)))
1565, 155sselid 3941 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ ℝ)
157 0red 11155 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ∈ ℝ)
158147, 156, 146ltled 11300 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑥𝑦)
159157, 147, 156, 148, 158letrd 11309 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 0 ≤ 𝑦)
160155, 70syl 17 . . . . . . . . . 10 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (-(π / 2) < 𝑦𝑦 < (π / 2)))
161160simprd 495 . . . . . . . . 9 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 < (π / 2))
162 elico2 13349 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (π / 2) ∈ ℝ*) → (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2))))
16396, 60, 162mp2an 692 . . . . . . . . 9 (𝑦 ∈ (0[,)(π / 2)) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦𝑦 < (π / 2)))
164156, 159, 161, 163syl3anbrc 1344 . . . . . . . 8 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → 𝑦 ∈ (0[,)(π / 2)))
165 tanord1 26480 . . . . . . . 8 ((𝑥 ∈ (0[,)(π / 2)) ∧ 𝑦 ∈ (0[,)(π / 2))) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
166154, 164, 165syl2anc 584 . . . . . . 7 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (𝑥 < 𝑦 ↔ (tan‘𝑥) < (tan‘𝑦)))
167146, 166mpbid 232 . . . . . 6 (((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) ∧ 0 ≤ 𝑥) → (tan‘𝑥) < (tan‘𝑦))
168145, 167, 15, 102ltlecasei 11260 . . . . 5 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑥 < 𝑦) → (tan‘𝑥) < (tan‘𝑦))
1691683expia 1121 . . . 4 ((𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
170169adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝑦 ∈ (-(π / 2)(,)(π / 2)))) → (𝑥 < 𝑦 → (tan‘𝑥) < (tan‘𝑦)))
1712, 3, 4, 5, 14, 170ltord1 11682 . 2 ((⊤ ∧ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2)))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
1721, 171mpan 690 1 ((𝐴 ∈ (-(π / 2)(,)(π / 2)) ∧ 𝐵 ∈ (-(π / 2)(,)(π / 2))) → (𝐴 < 𝐵 ↔ (tan‘𝐴) < (tan‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11044  cr 11045  0cc0 11046  *cxr 11185   < clt 11186  cle 11187  -cneg 11384   / cdiv 11813  2c2 12219  +crp 12929  (,)cioo 13284  [,)cico 13286  cre 15040  cosccos 16007  tanctan 16008  πcpi 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9572  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124  ax-addf 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-rp 12930  df-xneg 13050  df-xadd 13051  df-xmul 13052  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-fac 14217  df-bc 14246  df-hash 14274  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15414  df-clim 15431  df-rlim 15432  df-sum 15630  df-ef 16010  df-sin 16012  df-cos 16013  df-tan 16014  df-pi 16015  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-pt 17384  df-prds 17387  df-xrs 17442  df-qtop 17447  df-imas 17448  df-xps 17450  df-mre 17524  df-mrc 17525  df-acs 17527  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-psmet 21289  df-xmet 21290  df-met 21291  df-bl 21292  df-mopn 21293  df-fbas 21294  df-fg 21295  df-cnfld 21298  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-cld 22940  df-ntr 22941  df-cls 22942  df-nei 23019  df-lp 23057  df-perf 23058  df-cn 23148  df-cnp 23149  df-haus 23236  df-tx 23483  df-hmeo 23676  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-xms 24242  df-ms 24243  df-tms 24244  df-cncf 24805  df-limc 25801  df-dv 25802
This theorem is referenced by:  atanlogsublem  26859  atanord  26871  basellem4  27028
  Copyright terms: Public domain W3C validator