MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0a Structured version   Visualization version   GIF version

Theorem itg1ge0a 25766
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1ge0a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
itg1ge0a (𝜑 → 0 ≤ (∫1𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg1ge0a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
2 i1frn 25731 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
4 difss 4159 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
5 ssfi 9240 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
63, 4, 5sylancl 585 . . 3 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
7 i1ff 25730 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
81, 7syl 17 . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
98frnd 6755 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
109ssdifssd 4170 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
1110sselda 4008 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
12 i1fima2sn 25734 . . . . 5 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
131, 12sylan 579 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
1411, 13remulcld 11320 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
15 0le0 12394 . . . . 5 0 ≤ 0
16 i1fima 25732 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑘}) ∈ dom vol)
171, 16syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑘}) ∈ dom vol)
18 mblvol 25584 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
1917, 18syl 17 . . . . . . . . 9 (𝜑 → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2019ad2antrr 725 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
218ffnd 6748 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
22 fniniseg 7093 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2423ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
25 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
26 eldif 3986 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
27 itg1ge0a.4 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
2827ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
2928ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
30 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝐹𝑥) = 𝑘)
3130breq2d 5178 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ 𝑘))
32 0red 11293 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 0 ∈ ℝ)
3311adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ∈ ℝ)
3432, 33lenltd 11436 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0))
3531, 34bitrd 279 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ ¬ 𝑘 < 0))
3629, 35sylibd 239 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0))
3726, 36biimtrrid 243 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → ¬ 𝑘 < 0))
3825, 37mpand 694 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴 → ¬ 𝑘 < 0))
3938con4d 115 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥𝐴))
4039impancom 451 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
4124, 40sylbid 240 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
4241ssrdv 4014 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝐹 “ {𝑘}) ⊆ 𝐴)
43 itg10a.2 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
4443ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ)
45 itg10a.3 . . . . . . . . . 10 (𝜑 → (vol*‘𝐴) = 0)
4645ad2antrr 725 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0)
47 ovolssnul 25541 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4842, 44, 46, 47syl3anc 1371 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4920, 48eqtrd 2780 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = 0)
5049oveq2d 7464 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
5111recnd 11318 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
5251adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ)
5352mul01d 11489 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0)
5450, 53eqtrd 2780 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
5515, 54breqtrrid 5204 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
5611adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ)
5713adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
58 simpr 484 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
5917ad2antrr 725 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ∈ dom vol)
60 mblss 25585 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (𝐹 “ {𝑘}) ⊆ ℝ)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ⊆ ℝ)
62 ovolge0 25535 . . . . . . 7 ((𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6361, 62syl 17 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6419ad2antrr 725 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
6563, 64breqtrrd 5194 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol‘(𝐹 “ {𝑘})))
6656, 57, 58, 65mulge0d 11867 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
67 0red 11293 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈ ℝ)
6855, 66, 11, 67ltlecasei 11398 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
696, 14, 68fsumge0 15843 . 2 (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
70 itg1val 25737 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
711, 70syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7269, 71breqtrrd 5194 1 (𝜑 → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cdif 3973  wss 3976  {csn 4648   class class class wbr 5166  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184   · cmul 11189   < clt 11324  cle 11325  Σcsu 15734  vol*covol 25516  volcvol 25517  1citg1 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674
This theorem is referenced by:  itg1lea  25767
  Copyright terms: Public domain W3C validator