Step | Hyp | Ref
| Expression |
1 | | itg10a.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
2 | | i1frn 24746 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
4 | | difss 4062 |
. . . 4
⊢ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹 |
5 | | ssfi 8918 |
. . . 4
⊢ ((ran
𝐹 ∈ Fin ∧ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹) → (ran 𝐹 ∖ {0}) ∈
Fin) |
6 | 3, 4, 5 | sylancl 585 |
. . 3
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin) |
7 | | i1ff 24745 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
8 | 1, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
9 | 8 | frnd 6592 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
10 | 9 | ssdifssd 4073 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
11 | 10 | sselda 3917 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ) |
12 | | i1fima2sn 24749 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
13 | 1, 12 | sylan 579 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
14 | 11, 13 | remulcld 10936 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) ∈ ℝ) |
15 | | 0le0 12004 |
. . . . 5
⊢ 0 ≤
0 |
16 | | i1fima 24747 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑘}) ∈ dom vol) |
17 | 1, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {𝑘}) ∈ dom vol) |
18 | | mblvol 24599 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
20 | 19 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
21 | 8 | ffnd 6585 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn ℝ) |
22 | | fniniseg 6919 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
24 | 23 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
25 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑥 ∈ ℝ) |
26 | | eldif 3893 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) |
27 | | itg1ge0a.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) |
28 | 27 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
29 | 28 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
30 | | simprr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝐹‘𝑥) = 𝑘) |
31 | 30 | breq2d 5082 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ 𝑘)) |
32 | | 0red 10909 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 0 ∈ ℝ) |
33 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑘 ∈ ℝ) |
34 | 32, 33 | lenltd 11051 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0)) |
35 | 31, 34 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ ¬ 𝑘 < 0)) |
36 | 29, 35 | sylibd 238 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0)) |
37 | 26, 36 | syl5bir 242 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴) → ¬ 𝑘 < 0)) |
38 | 25, 37 | mpand 691 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑘 < 0)) |
39 | 38 | con4d 115 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥 ∈ 𝐴)) |
40 | 39 | impancom 451 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘) → 𝑥 ∈ 𝐴)) |
41 | 24, 40 | sylbid 239 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) → 𝑥 ∈ 𝐴)) |
42 | 41 | ssrdv 3923 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (◡𝐹 “ {𝑘}) ⊆ 𝐴) |
43 | | itg10a.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
44 | 43 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ) |
45 | | itg10a.3 |
. . . . . . . . . 10
⊢ (𝜑 → (vol*‘𝐴) = 0) |
46 | 45 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0) |
47 | | ovolssnul 24556 |
. . . . . . . . 9
⊢ (((◡𝐹 “ {𝑘}) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
48 | 42, 44, 46, 47 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
49 | 20, 48 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = 0) |
50 | 49 | oveq2d 7271 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = (𝑘 · 0)) |
51 | 11 | recnd 10934 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ) |
52 | 51 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ) |
53 | 52 | mul01d 11104 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0) |
54 | 50, 53 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = 0) |
55 | 15, 54 | breqtrrid 5108 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
56 | 11 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ) |
57 | 13 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
58 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘) |
59 | 17 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ∈ dom vol) |
60 | | mblss 24600 |
. . . . . . . 8
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
61 | 59, 60 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
62 | | ovolge0 24550 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
63 | 61, 62 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
64 | 19 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
65 | 63, 64 | breqtrrd 5098 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol‘(◡𝐹 “ {𝑘}))) |
66 | 56, 57, 58, 65 | mulge0d 11482 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
67 | | 0red 10909 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈
ℝ) |
68 | 55, 66, 11, 67 | ltlecasei 11013 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
69 | 6, 14, 68 | fsumge0 15435 |
. 2
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
70 | | itg1val 24752 |
. . 3
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
71 | 1, 70 | syl 17 |
. 2
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑘 ∈ (ran
𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
72 | 69, 71 | breqtrrd 5098 |
1
⊢ (𝜑 → 0 ≤
(∫1‘𝐹)) |