| Step | Hyp | Ref
| Expression |
| 1 | | itg10a.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ dom
∫1) |
| 2 | | i1frn 25635 |
. . . . 5
⊢ (𝐹 ∈ dom ∫1
→ ran 𝐹 ∈
Fin) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 ∈ Fin) |
| 4 | | difss 4116 |
. . . 4
⊢ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹 |
| 5 | | ssfi 9192 |
. . . 4
⊢ ((ran
𝐹 ∈ Fin ∧ (ran
𝐹 ∖ {0}) ⊆ ran
𝐹) → (ran 𝐹 ∖ {0}) ∈
Fin) |
| 6 | 3, 4, 5 | sylancl 586 |
. . 3
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin) |
| 7 | | i1ff 25634 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 8 | 1, 7 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 9 | 8 | frnd 6719 |
. . . . . 6
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 10 | 9 | ssdifssd 4127 |
. . . . 5
⊢ (𝜑 → (ran 𝐹 ∖ {0}) ⊆
ℝ) |
| 11 | 10 | sselda 3963 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ) |
| 12 | | i1fima2sn 25638 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) →
(vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 13 | 1, 12 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 14 | 11, 13 | remulcld 11270 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) ∈ ℝ) |
| 15 | | 0le0 12346 |
. . . . 5
⊢ 0 ≤
0 |
| 16 | | i1fima 25636 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 17 | 1, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 18 | | mblvol 25488 |
. . . . . . . . . 10
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 20 | 19 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 21 | 8 | ffnd 6712 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 22 | | fniniseg 7055 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 23 | 21, 22 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 24 | 23 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘))) |
| 25 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑥 ∈ ℝ) |
| 26 | | eldif 3941 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴)) |
| 27 | | itg1ge0a.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹‘𝑥)) |
| 28 | 27 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹‘𝑥))) |
| 30 | | simprr 772 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝐹‘𝑥) = 𝑘) |
| 31 | 30 | breq2d 5136 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ 0 ≤ 𝑘)) |
| 32 | | 0red 11243 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 0 ∈ ℝ) |
| 33 | 11 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → 𝑘 ∈ ℝ) |
| 34 | 32, 33 | lenltd 11386 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0)) |
| 35 | 31, 34 | bitrd 279 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (0 ≤ (𝐹‘𝑥) ↔ ¬ 𝑘 < 0)) |
| 36 | 29, 35 | sylibd 239 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0)) |
| 37 | 26, 36 | biimtrrid 243 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ 𝐴) → ¬ 𝑘 < 0)) |
| 38 | 25, 37 | mpand 695 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (¬ 𝑥 ∈ 𝐴 → ¬ 𝑘 < 0)) |
| 39 | 38 | con4d 115 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥 ∈ 𝐴)) |
| 40 | 39 | impancom 451 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹‘𝑥) = 𝑘) → 𝑥 ∈ 𝐴)) |
| 41 | 24, 40 | sylbid 240 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (◡𝐹 “ {𝑘}) → 𝑥 ∈ 𝐴)) |
| 42 | 41 | ssrdv 3969 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (◡𝐹 “ {𝑘}) ⊆ 𝐴) |
| 43 | | itg10a.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ) |
| 45 | | itg10a.3 |
. . . . . . . . . 10
⊢ (𝜑 → (vol*‘𝐴) = 0) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0) |
| 47 | | ovolssnul 25445 |
. . . . . . . . 9
⊢ (((◡𝐹 “ {𝑘}) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 48 | 42, 44, 46, 47 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(◡𝐹 “ {𝑘})) = 0) |
| 49 | 20, 48 | eqtrd 2771 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(◡𝐹 “ {𝑘})) = 0) |
| 50 | 49 | oveq2d 7426 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = (𝑘 · 0)) |
| 51 | 11 | recnd 11268 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ) |
| 52 | 51 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ) |
| 53 | 52 | mul01d 11439 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0) |
| 54 | 50, 53 | eqtrd 2771 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(◡𝐹 “ {𝑘}))) = 0) |
| 55 | 15, 54 | breqtrrid 5162 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 56 | 11 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ) |
| 57 | 13 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) ∈ ℝ) |
| 58 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘) |
| 59 | 17 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ∈ dom vol) |
| 60 | | mblss 25489 |
. . . . . . . 8
⊢ ((◡𝐹 “ {𝑘}) ∈ dom vol → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
| 61 | 59, 60 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (◡𝐹 “ {𝑘}) ⊆ ℝ) |
| 62 | | ovolge0 25439 |
. . . . . . 7
⊢ ((◡𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
| 63 | 61, 62 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol*‘(◡𝐹 “ {𝑘}))) |
| 64 | 19 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(◡𝐹 “ {𝑘})) = (vol*‘(◡𝐹 “ {𝑘}))) |
| 65 | 63, 64 | breqtrrd 5152 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤
(vol‘(◡𝐹 “ {𝑘}))) |
| 66 | 56, 57, 58, 65 | mulge0d 11819 |
. . . 4
⊢ (((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 67 | | 0red 11243 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈
ℝ) |
| 68 | 55, 66, 11, 67 | ltlecasei 11348 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 69 | 6, 14, 68 | fsumge0 15816 |
. 2
⊢ (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 70 | | itg1val 25641 |
. . 3
⊢ (𝐹 ∈ dom ∫1
→ (∫1‘𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 71 | 1, 70 | syl 17 |
. 2
⊢ (𝜑 →
(∫1‘𝐹)
= Σ𝑘 ∈ (ran
𝐹 ∖ {0})(𝑘 · (vol‘(◡𝐹 “ {𝑘})))) |
| 72 | 69, 71 | breqtrrd 5152 |
1
⊢ (𝜑 → 0 ≤
(∫1‘𝐹)) |