MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0a Structured version   Visualization version   GIF version

Theorem itg1ge0a 25628
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1ge0a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
itg1ge0a (𝜑 → 0 ≤ (∫1𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg1ge0a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
2 i1frn 25594 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
4 difss 4089 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
5 ssfi 9097 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
63, 4, 5sylancl 586 . . 3 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
7 i1ff 25593 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
81, 7syl 17 . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
98frnd 6664 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
109ssdifssd 4100 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
1110sselda 3937 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
12 i1fima2sn 25597 . . . . 5 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
131, 12sylan 580 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
1411, 13remulcld 11164 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
15 0le0 12247 . . . . 5 0 ≤ 0
16 i1fima 25595 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑘}) ∈ dom vol)
171, 16syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑘}) ∈ dom vol)
18 mblvol 25447 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
1917, 18syl 17 . . . . . . . . 9 (𝜑 → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2019ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
218ffnd 6657 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
22 fniniseg 6998 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2423ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
25 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
26 eldif 3915 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
27 itg1ge0a.4 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
2827ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
2928ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
30 simprr 772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝐹𝑥) = 𝑘)
3130breq2d 5107 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ 𝑘))
32 0red 11137 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 0 ∈ ℝ)
3311adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ∈ ℝ)
3432, 33lenltd 11280 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0))
3531, 34bitrd 279 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ ¬ 𝑘 < 0))
3629, 35sylibd 239 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0))
3726, 36biimtrrid 243 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → ¬ 𝑘 < 0))
3825, 37mpand 695 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴 → ¬ 𝑘 < 0))
3938con4d 115 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥𝐴))
4039impancom 451 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
4124, 40sylbid 240 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
4241ssrdv 3943 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝐹 “ {𝑘}) ⊆ 𝐴)
43 itg10a.2 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
4443ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ)
45 itg10a.3 . . . . . . . . . 10 (𝜑 → (vol*‘𝐴) = 0)
4645ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0)
47 ovolssnul 25404 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4842, 44, 46, 47syl3anc 1373 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4920, 48eqtrd 2764 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = 0)
5049oveq2d 7369 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
5111recnd 11162 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
5251adantr 480 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ)
5352mul01d 11333 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0)
5450, 53eqtrd 2764 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
5515, 54breqtrrid 5133 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
5611adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ)
5713adantr 480 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
58 simpr 484 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
5917ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ∈ dom vol)
60 mblss 25448 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (𝐹 “ {𝑘}) ⊆ ℝ)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ⊆ ℝ)
62 ovolge0 25398 . . . . . . 7 ((𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6361, 62syl 17 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6419ad2antrr 726 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
6563, 64breqtrrd 5123 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol‘(𝐹 “ {𝑘})))
6656, 57, 58, 65mulge0d 11715 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
67 0red 11137 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈ ℝ)
6855, 66, 11, 67ltlecasei 11242 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
696, 14, 68fsumge0 15720 . 2 (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
70 itg1val 25600 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
711, 70syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7269, 71breqtrrd 5123 1 (𝜑 → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  0cc0 11028   · cmul 11033   < clt 11168  cle 11169  Σcsu 15611  vol*covol 25379  volcvol 25380  1citg1 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xadd 13033  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-xmet 21272  df-met 21273  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537
This theorem is referenced by:  itg1lea  25629
  Copyright terms: Public domain W3C validator