MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Visualization version   GIF version

Theorem ltnri 11369
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
ltnri ¬ 𝐴 < 𝐴

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 ltnr 11355 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2ax-mp 5 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2098   class class class wbr 5152  cr 11153   < clt 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-resscn 11211  ax-pre-lttri 11228  ax-pre-lttrn 11229
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-ltxr 11299
This theorem is referenced by:  lt0ne0d  11825  prodgt0  12108  elnnnn0b  12563  0nrp  13058  geolim  15869  geolim2  15870  georeclim  15871  geoisum1c  15879  0ringnnzr  20502  dscopn  24565  logcnlem3  26663  jensen  27009  gausslemma2dlem0i  27385  2sqreultblem  27469  2sqreunnltblem  27472  ostth  27660  tgcgr4  28450  clwwlkn0  29953  konigsberg  30182  expgt0b  32706  signswch  34363  signlem0  34389  poimirlem32  37301  oexpreposd  42062  pell1qrgaplem  42467  relexp01min  43317  rexanuz2nf  45045  sbgoldbaltlem1  47288  ex-gt  48411
  Copyright terms: Public domain W3C validator