| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnri | Structured version Visualization version GIF version | ||
| Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnri | ⊢ ¬ 𝐴 < 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | ltnr 11245 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 < 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: lt0ne0d 11719 prodgt0 12005 elnnnn0b 12462 0nrp 12964 geolim 15812 geolim2 15813 georeclim 15814 geoisum1c 15822 0ringnnzr 20410 dscopn 24437 logcnlem3 26529 jensen 26875 gausslemma2dlem0i 27251 2sqreultblem 27335 2sqreunnltblem 27338 ostth 27526 tgcgr4 28434 clwwlkn0 29930 konigsberg 30159 expgt0b 32714 fldext2chn 33691 signswch 34525 signlem0 34551 poimirlem32 37619 oexpreposd 42283 pell1qrgaplem 42834 relexp01min 43675 rexanuz2nf 45461 sbgoldbaltlem1 47753 ex-gt 49690 |
| Copyright terms: Public domain | W3C validator |