MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Visualization version   GIF version

Theorem ltnri 11259
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
ltnri ¬ 𝐴 < 𝐴

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 ltnr 11245 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2ax-mp 5 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109   class class class wbr 5102  cr 11043   < clt 11184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189
This theorem is referenced by:  lt0ne0d  11719  prodgt0  12005  elnnnn0b  12462  0nrp  12964  geolim  15812  geolim2  15813  georeclim  15814  geoisum1c  15822  0ringnnzr  20410  dscopn  24437  logcnlem3  26529  jensen  26875  gausslemma2dlem0i  27251  2sqreultblem  27335  2sqreunnltblem  27338  ostth  27526  tgcgr4  28434  clwwlkn0  29930  konigsberg  30159  expgt0b  32714  fldext2chn  33691  signswch  34525  signlem0  34551  poimirlem32  37619  oexpreposd  42283  pell1qrgaplem  42834  relexp01min  43675  rexanuz2nf  45461  sbgoldbaltlem1  47753  ex-gt  49690
  Copyright terms: Public domain W3C validator