Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnri | Structured version Visualization version GIF version |
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
ltnri | ⊢ ¬ 𝐴 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltnr 11068 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 < 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2110 class class class wbr 5079 ℝcr 10869 < clt 11008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-resscn 10927 ax-pre-lttri 10944 ax-pre-lttrn 10945 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-pnf 11010 df-mnf 11011 df-ltxr 11013 |
This theorem is referenced by: lt0ne0d 11538 prodgt0 11820 elnnnn0b 12275 0nrp 12762 geolim 15578 geolim2 15579 georeclim 15580 geoisum1c 15588 0ringnnzr 20536 dscopn 23725 logcnlem3 25795 jensen 26134 gausslemma2dlem0i 26508 2sqreultblem 26592 2sqreunnltblem 26595 ostth 26783 tgcgr4 26888 clwwlkn0 28386 konigsberg 28615 signswch 32534 signlem0 32560 poimirlem32 35803 oexpreposd 40316 pell1qrgaplem 40690 relexp01min 41289 sbgoldbaltlem1 45198 ex-gt 46397 |
Copyright terms: Public domain | W3C validator |