MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Visualization version   GIF version

Theorem ltnri 11344
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
ltnri ¬ 𝐴 < 𝐴

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 ltnr 11330 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2ax-mp 5 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108   class class class wbr 5119  cr 11128   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274
This theorem is referenced by:  lt0ne0d  11802  prodgt0  12088  elnnnn0b  12545  0nrp  13044  geolim  15886  geolim2  15887  georeclim  15888  geoisum1c  15896  0ringnnzr  20485  dscopn  24512  logcnlem3  26605  jensen  26951  gausslemma2dlem0i  27327  2sqreultblem  27411  2sqreunnltblem  27414  ostth  27602  tgcgr4  28510  clwwlkn0  30009  konigsberg  30238  expgt0b  32795  fldext2chn  33762  signswch  34593  signlem0  34619  poimirlem32  37676  oexpreposd  42371  pell1qrgaplem  42896  relexp01min  43737  rexanuz2nf  45519  sbgoldbaltlem1  47793  ex-gt  49592
  Copyright terms: Public domain W3C validator