Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnri | Structured version Visualization version GIF version |
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
ltnri | ⊢ ¬ 𝐴 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltnr 11070 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 < 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: lt0ne0d 11540 prodgt0 11822 elnnnn0b 12277 0nrp 12765 geolim 15582 geolim2 15583 georeclim 15584 geoisum1c 15592 0ringnnzr 20540 dscopn 23729 logcnlem3 25799 jensen 26138 gausslemma2dlem0i 26512 2sqreultblem 26596 2sqreunnltblem 26599 ostth 26787 tgcgr4 26892 clwwlkn0 28392 konigsberg 28621 signswch 32540 signlem0 32566 poimirlem32 35809 oexpreposd 40321 pell1qrgaplem 40695 relexp01min 41321 sbgoldbaltlem1 45231 ex-gt 46430 |
Copyright terms: Public domain | W3C validator |