![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnri | Structured version Visualization version GIF version |
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
ltnri | ⊢ ¬ 𝐴 < 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | ltnr 11353 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 < 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-ltxr 11297 |
This theorem is referenced by: lt0ne0d 11825 prodgt0 12111 elnnnn0b 12567 0nrp 13067 geolim 15902 geolim2 15903 georeclim 15904 geoisum1c 15912 0ringnnzr 20541 dscopn 24601 logcnlem3 26700 jensen 27046 gausslemma2dlem0i 27422 2sqreultblem 27506 2sqreunnltblem 27509 ostth 27697 tgcgr4 28553 clwwlkn0 30056 konigsberg 30285 expgt0b 32822 fldext2chn 33733 signswch 34554 signlem0 34580 poimirlem32 37638 oexpreposd 42335 pell1qrgaplem 42860 relexp01min 43702 rexanuz2nf 45442 sbgoldbaltlem1 47703 ex-gt 48958 |
Copyright terms: Public domain | W3C validator |