MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnri Structured version   Visualization version   GIF version

Theorem ltnri 10726
Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
ltnri ¬ 𝐴 < 𝐴

Proof of Theorem ltnri
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 ltnr 10712 . 2 (𝐴 ∈ ℝ → ¬ 𝐴 < 𝐴)
31, 2ax-mp 5 1 ¬ 𝐴 < 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2115   class class class wbr 5039  cr 10513   < clt 10652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-pre-lttri 10588  ax-pre-lttrn 10589
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-ltxr 10657
This theorem is referenced by:  lt0ne0d  11182  prodgt0  11464  elnnnn0b  11919  0nrp  12402  geolim  15205  geolim2  15206  georeclim  15207  geoisum1c  15215  0ringnnzr  20018  dscopn  23159  logcnlem3  25214  jensen  25553  gausslemma2dlem0i  25927  2sqreultblem  26011  2sqreunnltblem  26014  ostth  26202  tgcgr4  26304  clwwlkn0  27792  konigsberg  28021  signswch  31839  signlem0  31865  poimirlem32  34971  oexpreposd  39313  pell1qrgaplem  39621  relexp01min  40221  sbgoldbaltlem1  44116  ex-gt  45061
  Copyright terms: Public domain W3C validator