| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sinltx | Structured version Visualization version GIF version | ||
| Description: The sine of a positive real number is less than its argument. (Contributed by Mario Carneiro, 29-Jul-2014.) |
| Ref | Expression |
|---|---|
| sinltx | ⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre 13025 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ) |
| 3 | 2 | resincld 16162 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → (sin‘𝐴) ∈ ℝ) |
| 4 | 1red 11244 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → 1 ∈ ℝ) | |
| 5 | sinbnd 16199 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (-1 ≤ (sin‘𝐴) ∧ (sin‘𝐴) ≤ 1)) | |
| 6 | 5 | simprd 495 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ≤ 1) |
| 7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) ≤ 1) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → (sin‘𝐴) ≤ 1) |
| 9 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → 1 < 𝐴) | |
| 10 | 3, 4, 2, 8, 9 | lelttrd 11401 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 1 < 𝐴) → (sin‘𝐴) < 𝐴) |
| 11 | df-3an 1088 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1)) | |
| 12 | 0xr 11290 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 13 | 1re 11243 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 14 | elioc2 13432 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1))) | |
| 15 | 12, 13, 14 | mp2an 692 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1)) |
| 16 | elrp 13018 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 17 | 16 | anbi1i 624 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) ↔ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ 𝐴 ≤ 1)) |
| 18 | 11, 15, 17 | 3bitr4i 303 | . . 3 ⊢ (𝐴 ∈ (0(,]1) ↔ (𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1)) |
| 19 | sin01bnd 16204 | . . . 4 ⊢ (𝐴 ∈ (0(,]1) → ((𝐴 − ((𝐴↑3) / 3)) < (sin‘𝐴) ∧ (sin‘𝐴) < 𝐴)) | |
| 20 | 19 | simprd 495 | . . 3 ⊢ (𝐴 ∈ (0(,]1) → (sin‘𝐴) < 𝐴) |
| 21 | 18, 20 | sylbir 235 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sin‘𝐴) < 𝐴) |
| 22 | 1red 11244 | . 2 ⊢ (𝐴 ∈ ℝ+ → 1 ∈ ℝ) | |
| 23 | 10, 21, 22, 1 | ltlecasei 11351 | 1 ⊢ (𝐴 ∈ ℝ+ → (sin‘𝐴) < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 − cmin 11474 -cneg 11475 / cdiv 11902 3c3 12304 ℝ+crp 13016 (,]cioc 13370 ↑cexp 14084 sincsin 16082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-pm 8851 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-ioc 13374 df-ico 13375 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 |
| This theorem is referenced by: pigt3 26497 basellem8 27068 |
| Copyright terms: Public domain | W3C validator |