| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnldil | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| ltrnldil.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnldil | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2729 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | eqid 2729 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | ltrnldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 7 | ltrnldil.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 40113 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹‘𝑞))(meet‘𝐾)𝑊))))) |
| 9 | 8 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 meetcmee 18273 Atomscatm 39256 LHypclh 39978 LDilcldil 40094 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-ltrn 40099 |
| This theorem is referenced by: ltrnlaut 40117 ltrnval1 40128 ltrncnv 40140 ltrnco 40713 |
| Copyright terms: Public domain | W3C validator |