Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnldil Structured version   Visualization version   GIF version

Theorem ltrnldil 40294
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnldil.h 𝐻 = (LHyp‘𝐾)
ltrnldil.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnldil.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnldil (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐷)

Proof of Theorem ltrnldil
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (le‘𝐾) = (le‘𝐾)
2 eqid 2733 . . 3 (join‘𝐾) = (join‘𝐾)
3 eqid 2733 . . 3 (meet‘𝐾) = (meet‘𝐾)
4 eqid 2733 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
5 ltrnldil.h . . 3 𝐻 = (LHyp‘𝐾)
6 ltrnldil.d . . 3 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnldil.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7isltrn 40291 . 2 ((𝐾𝑉𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹𝑞))(meet‘𝐾)𝑊)))))
98simprbda 498 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  cfv 6489  (class class class)co 7355  lecple 17175  joincjn 18225  meetcmee 18226  Atomscatm 39435  LHypclh 40156  LDilcldil 40272  LTrncltrn 40273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-ltrn 40277
This theorem is referenced by:  ltrnlaut  40295  ltrnval1  40306  ltrncnv  40318  ltrnco  40891
  Copyright terms: Public domain W3C validator