![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnldil | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
ltrnldil.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnldil | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | eqid 2740 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
5 | ltrnldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
7 | ltrnldil.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 40076 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹‘𝑞))(meet‘𝐾)𝑊))))) |
9 | 8 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 meetcmee 18382 Atomscatm 39219 LHypclh 39941 LDilcldil 40057 LTrncltrn 40058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-ltrn 40062 |
This theorem is referenced by: ltrnlaut 40080 ltrnval1 40091 ltrncnv 40103 ltrnco 40676 |
Copyright terms: Public domain | W3C validator |