Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnldil Structured version   Visualization version   GIF version

Theorem ltrnldil 39296
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnldil.h 𝐻 = (LHypβ€˜πΎ)
ltrnldil.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
ltrnldil.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnldil (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝐷)

Proof of Theorem ltrnldil
Dummy variables π‘ž 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (leβ€˜πΎ) = (leβ€˜πΎ)
2 eqid 2732 . . 3 (joinβ€˜πΎ) = (joinβ€˜πΎ)
3 eqid 2732 . . 3 (meetβ€˜πΎ) = (meetβ€˜πΎ)
4 eqid 2732 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
5 ltrnldil.h . . 3 𝐻 = (LHypβ€˜πΎ)
6 ltrnldil.d . . 3 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
7 ltrnldil.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7isltrn 39293 . 2 ((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)(πΉβ€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)(πΉβ€˜π‘ž))(meetβ€˜πΎ)π‘Š)))))
98simprbda 499 1 (((𝐾 ∈ 𝑉 ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  LHypclh 39158  LDilcldil 39274  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-ltrn 39279
This theorem is referenced by:  ltrnlaut  39297  ltrnval1  39308  ltrncnv  39320  ltrnco  39893
  Copyright terms: Public domain W3C validator