| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnldil | Structured version Visualization version GIF version | ||
| Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnldil.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnldil.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| ltrnldil.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| ltrnldil | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | eqid 2733 | . . 3 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 3 | eqid 2733 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | eqid 2733 | . . 3 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 5 | ltrnldil.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnldil.d | . . 3 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 7 | ltrnldil.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 40291 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(𝐹‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(𝐹‘𝑞))(meet‘𝐾)𝑊))))) |
| 9 | 8 | simprbda 498 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 lecple 17175 joincjn 18225 meetcmee 18226 Atomscatm 39435 LHypclh 40156 LDilcldil 40272 LTrncltrn 40273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-ltrn 40277 |
| This theorem is referenced by: ltrnlaut 40295 ltrnval1 40306 ltrncnv 40318 ltrnco 40891 |
| Copyright terms: Public domain | W3C validator |