![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnldil | Structured version Visualization version GIF version |
Description: A lattice translation is a lattice dilation. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnldil.h | β’ π» = (LHypβπΎ) |
ltrnldil.d | β’ π· = ((LDilβπΎ)βπ) |
ltrnldil.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnldil | β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β π·) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (leβπΎ) = (leβπΎ) | |
2 | eqid 2732 | . . 3 β’ (joinβπΎ) = (joinβπΎ) | |
3 | eqid 2732 | . . 3 β’ (meetβπΎ) = (meetβπΎ) | |
4 | eqid 2732 | . . 3 β’ (AtomsβπΎ) = (AtomsβπΎ) | |
5 | ltrnldil.h | . . 3 β’ π» = (LHypβπΎ) | |
6 | ltrnldil.d | . . 3 β’ π· = ((LDilβπΎ)βπ) | |
7 | ltrnldil.t | . . 3 β’ π = ((LTrnβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isltrn 39293 | . 2 β’ ((πΎ β π β§ π β π») β (πΉ β π β (πΉ β π· β§ βπ β (AtomsβπΎ)βπ β (AtomsβπΎ)((Β¬ π(leβπΎ)π β§ Β¬ π(leβπΎ)π) β ((π(joinβπΎ)(πΉβπ))(meetβπΎ)π) = ((π(joinβπΎ)(πΉβπ))(meetβπΎ)π))))) |
9 | 8 | simprbda 499 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β π·) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 βcfv 6543 (class class class)co 7411 lecple 17208 joincjn 18268 meetcmee 18269 Atomscatm 38436 LHypclh 39158 LDilcldil 39274 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-ltrn 39279 |
This theorem is referenced by: ltrnlaut 39297 ltrnval1 39308 ltrncnv 39320 ltrnco 39893 |
Copyright terms: Public domain | W3C validator |