Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnu Structured version   Visualization version   GIF version

Theorem ltrnu 38062
Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom 𝑊. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnu.l = (le‘𝐾)
ltrnu.j = (join‘𝐾)
ltrnu.m = (meet‘𝐾)
ltrnu.a 𝐴 = (Atoms‘𝐾)
ltrnu.h 𝐻 = (LHyp‘𝐾)
ltrnu.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnu ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))

Proof of Theorem ltrnu
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 652 . . 3 (((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ↔ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
2 simpr 484 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃𝐴𝑄𝐴))
3 simplr 765 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → 𝐹𝑇)
4 ltrnu.l . . . . . . . . 9 = (le‘𝐾)
5 ltrnu.j . . . . . . . . 9 = (join‘𝐾)
6 ltrnu.m . . . . . . . . 9 = (meet‘𝐾)
7 ltrnu.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 ltrnu.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2738 . . . . . . . . 9 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
10 ltrnu.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10isltrn 38060 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
1211ad2antrr 722 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
13 simpr 484 . . . . . . 7 ((𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
1412, 13syl6bi 252 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
153, 14mpd 15 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
16 breq1 5073 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 𝑊𝑃 𝑊))
1716notbid 317 . . . . . . . 8 (𝑝 = 𝑃 → (¬ 𝑝 𝑊 ↔ ¬ 𝑃 𝑊))
1817anbi1d 629 . . . . . . 7 (𝑝 = 𝑃 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊)))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑃𝑝 = 𝑃)
20 fveq2 6756 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
2119, 20oveq12d 7273 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 (𝐹𝑝)) = (𝑃 (𝐹𝑃)))
2221oveq1d 7270 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
2322eqeq1d 2740 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2418, 23imbi12d 344 . . . . . 6 (𝑝 = 𝑃 → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
25 breq1 5073 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 𝑊𝑄 𝑊))
2625notbid 317 . . . . . . . 8 (𝑞 = 𝑄 → (¬ 𝑞 𝑊 ↔ ¬ 𝑄 𝑊))
2726anbi2d 628 . . . . . . 7 (𝑞 = 𝑄 → ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
28 id 22 . . . . . . . . . 10 (𝑞 = 𝑄𝑞 = 𝑄)
29 fveq2 6756 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
3028, 29oveq12d 7273 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 (𝐹𝑞)) = (𝑄 (𝐹𝑄)))
3130oveq1d 7270 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
3231eqeq2d 2749 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3327, 32imbi12d 344 . . . . . 6 (𝑞 = 𝑄 → (((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
3424, 33rspc2v 3562 . . . . 5 ((𝑃𝐴𝑄𝐴) → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
352, 15, 34sylc 65 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3635impr 454 . . 3 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
371, 36sylan2b 593 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
38373impb 1113 1 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  LHypclh 37925  LDilcldil 38041  LTrncltrn 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-ltrn 38046
This theorem is referenced by:  ltrncnv  38087  trlval2  38104  cdlemg14f  38594  cdlemg14g  38595
  Copyright terms: Public domain W3C validator