Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnu Structured version   Visualization version   GIF version

Theorem ltrnu 40078
Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom 𝑊. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnu.l = (le‘𝐾)
ltrnu.j = (join‘𝐾)
ltrnu.m = (meet‘𝐾)
ltrnu.a 𝐴 = (Atoms‘𝐾)
ltrnu.h 𝐻 = (LHyp‘𝐾)
ltrnu.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnu ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))

Proof of Theorem ltrnu
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 655 . . 3 (((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ↔ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
2 simpr 484 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃𝐴𝑄𝐴))
3 simplr 768 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → 𝐹𝑇)
4 ltrnu.l . . . . . . . . 9 = (le‘𝐾)
5 ltrnu.j . . . . . . . . 9 = (join‘𝐾)
6 ltrnu.m . . . . . . . . 9 = (meet‘𝐾)
7 ltrnu.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 ltrnu.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2740 . . . . . . . . 9 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
10 ltrnu.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10isltrn 40076 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
1211ad2antrr 725 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
13 simpr 484 . . . . . . 7 ((𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
1412, 13biimtrdi 253 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
153, 14mpd 15 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
16 breq1 5169 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 𝑊𝑃 𝑊))
1716notbid 318 . . . . . . . 8 (𝑝 = 𝑃 → (¬ 𝑝 𝑊 ↔ ¬ 𝑃 𝑊))
1817anbi1d 630 . . . . . . 7 (𝑝 = 𝑃 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊)))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑃𝑝 = 𝑃)
20 fveq2 6920 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
2119, 20oveq12d 7466 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 (𝐹𝑝)) = (𝑃 (𝐹𝑃)))
2221oveq1d 7463 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
2322eqeq1d 2742 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2418, 23imbi12d 344 . . . . . 6 (𝑝 = 𝑃 → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
25 breq1 5169 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 𝑊𝑄 𝑊))
2625notbid 318 . . . . . . . 8 (𝑞 = 𝑄 → (¬ 𝑞 𝑊 ↔ ¬ 𝑄 𝑊))
2726anbi2d 629 . . . . . . 7 (𝑞 = 𝑄 → ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
28 id 22 . . . . . . . . . 10 (𝑞 = 𝑄𝑞 = 𝑄)
29 fveq2 6920 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
3028, 29oveq12d 7466 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 (𝐹𝑞)) = (𝑄 (𝐹𝑄)))
3130oveq1d 7463 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
3231eqeq2d 2751 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3327, 32imbi12d 344 . . . . . 6 (𝑞 = 𝑄 → (((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
3424, 33rspc2v 3646 . . . . 5 ((𝑃𝐴𝑄𝐴) → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
352, 15, 34sylc 65 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3635impr 454 . . 3 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
371, 36sylan2b 593 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
38373impb 1115 1 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067   class class class wbr 5166  cfv 6573  (class class class)co 7448  lecple 17318  joincjn 18381  meetcmee 18382  Atomscatm 39219  LHypclh 39941  LDilcldil 40057  LTrncltrn 40058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-ltrn 40062
This theorem is referenced by:  ltrncnv  40103  trlval2  40120  cdlemg14f  40610  cdlemg14g  40611
  Copyright terms: Public domain W3C validator