Step | Hyp | Ref
| Expression |
1 | | an4 652 |
. . 3
⊢ (((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ↔ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊))) |
2 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
3 | | simplr 765 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝐹 ∈ 𝑇) |
4 | | ltrnu.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
5 | | ltrnu.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
6 | | ltrnu.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
7 | | ltrnu.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
8 | | ltrnu.h |
. . . . . . . . 9
⊢ 𝐻 = (LHyp‘𝐾) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢
((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) |
10 | | ltrnu.t |
. . . . . . . . 9
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
11 | 4, 5, 6, 7, 8, 9, 10 | isltrn 38060 |
. . . . . . . 8
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
12 | 11 | ad2antrr 722 |
. . . . . . 7
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
13 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
14 | 12, 13 | syl6bi 252 |
. . . . . 6
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → (𝐹 ∈ 𝑇 → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
15 | 3, 14 | mpd 15 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
16 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝 ≤ 𝑊 ↔ 𝑃 ≤ 𝑊)) |
17 | 16 | notbid 317 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → (¬ 𝑝 ≤ 𝑊 ↔ ¬ 𝑃 ≤ 𝑊)) |
18 | 17 | anbi1d 629 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ↔ (¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊))) |
19 | | id 22 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → 𝑝 = 𝑃) |
20 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → (𝐹‘𝑝) = (𝐹‘𝑃)) |
21 | 19, 20 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑝 ∨ (𝐹‘𝑝)) = (𝑃 ∨ (𝐹‘𝑃))) |
22 | 21 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊)) |
23 | 22 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑝 = 𝑃 → (((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) ↔ ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
24 | 18, 23 | imbi12d 344 |
. . . . . 6
⊢ (𝑝 = 𝑃 → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
25 | | breq1 5073 |
. . . . . . . . 9
⊢ (𝑞 = 𝑄 → (𝑞 ≤ 𝑊 ↔ 𝑄 ≤ 𝑊)) |
26 | 25 | notbid 317 |
. . . . . . . 8
⊢ (𝑞 = 𝑄 → (¬ 𝑞 ≤ 𝑊 ↔ ¬ 𝑄 ≤ 𝑊)) |
27 | 26 | anbi2d 628 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → ((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) ↔ (¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊))) |
28 | | id 22 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑄 → 𝑞 = 𝑄) |
29 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑞 = 𝑄 → (𝐹‘𝑞) = (𝐹‘𝑄)) |
30 | 28, 29 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑞 = 𝑄 → (𝑞 ∨ (𝐹‘𝑞)) = (𝑄 ∨ (𝐹‘𝑄))) |
31 | 30 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑞 = 𝑄 → ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |
32 | 31 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝑞 = 𝑄 → (((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊) ↔ ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊))) |
33 | 27, 32 | imbi12d 344 |
. . . . . 6
⊢ (𝑞 = 𝑄 → (((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)))) |
34 | 24, 33 | rspc2v 3562 |
. . . . 5
⊢ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) → ((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)))) |
35 | 2, 15, 34 | sylc 65 |
. . . 4
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ((¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊))) |
36 | 35 | impr 454 |
. . 3
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (¬ 𝑃 ≤ 𝑊 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |
37 | 1, 36 | sylan2b 593 |
. 2
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |
38 | 37 | 3impb 1113 |
1
⊢ ((((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑃 ∨ (𝐹‘𝑃)) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘𝑄)) ∧ 𝑊)) |