Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnu Structured version   Visualization version   GIF version

Theorem ltrnu 40159
Description: Uniqueness property of a lattice translation value for atoms not under the fiducial co-atom 𝑊. Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnu.l = (le‘𝐾)
ltrnu.j = (join‘𝐾)
ltrnu.m = (meet‘𝐾)
ltrnu.a 𝐴 = (Atoms‘𝐾)
ltrnu.h 𝐻 = (LHyp‘𝐾)
ltrnu.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnu ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))

Proof of Theorem ltrnu
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 656 . . 3 (((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ↔ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
2 simpr 484 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝑃𝐴𝑄𝐴))
3 simplr 768 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → 𝐹𝑇)
4 ltrnu.l . . . . . . . . 9 = (le‘𝐾)
5 ltrnu.j . . . . . . . . 9 = (join‘𝐾)
6 ltrnu.m . . . . . . . . 9 = (meet‘𝐾)
7 ltrnu.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
8 ltrnu.h . . . . . . . . 9 𝐻 = (LHyp‘𝐾)
9 eqid 2731 . . . . . . . . 9 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
10 ltrnu.t . . . . . . . . 9 𝑇 = ((LTrn‘𝐾)‘𝑊)
114, 5, 6, 7, 8, 9, 10isltrn 40157 . . . . . . . 8 ((𝐾𝑉𝑊𝐻) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
1211ad2antrr 726 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 ↔ (𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
13 simpr 484 . . . . . . 7 ((𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
1412, 13biimtrdi 253 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → (𝐹𝑇 → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
153, 14mpd 15 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
16 breq1 5094 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 𝑊𝑃 𝑊))
1716notbid 318 . . . . . . . 8 (𝑝 = 𝑃 → (¬ 𝑝 𝑊 ↔ ¬ 𝑃 𝑊))
1817anbi1d 631 . . . . . . 7 (𝑝 = 𝑃 → ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊)))
19 id 22 . . . . . . . . . 10 (𝑝 = 𝑃𝑝 = 𝑃)
20 fveq2 6822 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝐹𝑝) = (𝐹𝑃))
2119, 20oveq12d 7364 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝 (𝐹𝑝)) = (𝑃 (𝐹𝑃)))
2221oveq1d 7361 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑃 (𝐹𝑃)) 𝑊))
2322eqeq1d 2733 . . . . . . 7 (𝑝 = 𝑃 → (((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
2418, 23imbi12d 344 . . . . . 6 (𝑝 = 𝑃 → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
25 breq1 5094 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 𝑊𝑄 𝑊))
2625notbid 318 . . . . . . . 8 (𝑞 = 𝑄 → (¬ 𝑞 𝑊 ↔ ¬ 𝑄 𝑊))
2726anbi2d 630 . . . . . . 7 (𝑞 = 𝑄 → ((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) ↔ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊)))
28 id 22 . . . . . . . . . 10 (𝑞 = 𝑄𝑞 = 𝑄)
29 fveq2 6822 . . . . . . . . . 10 (𝑞 = 𝑄 → (𝐹𝑞) = (𝐹𝑄))
3028, 29oveq12d 7364 . . . . . . . . 9 (𝑞 = 𝑄 → (𝑞 (𝐹𝑞)) = (𝑄 (𝐹𝑄)))
3130oveq1d 7361 . . . . . . . 8 (𝑞 = 𝑄 → ((𝑞 (𝐹𝑞)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
3231eqeq2d 2742 . . . . . . 7 (𝑞 = 𝑄 → (((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊) ↔ ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3327, 32imbi12d 344 . . . . . 6 (𝑞 = 𝑄 → (((¬ 𝑃 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) ↔ ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
3424, 33rspc2v 3588 . . . . 5 ((𝑃𝐴𝑄𝐴) → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))))
352, 15, 34sylc 65 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴𝑄𝐴)) → ((¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊)))
3635impr 454 . . 3 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴𝑄𝐴) ∧ (¬ 𝑃 𝑊 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
371, 36sylan2b 594 . 2 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
38373impb 1114 1 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑃 (𝐹𝑃)) 𝑊) = ((𝑄 (𝐹𝑄)) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091  cfv 6481  (class class class)co 7346  lecple 17165  joincjn 18214  meetcmee 18215  Atomscatm 39301  LHypclh 40022  LDilcldil 40138  LTrncltrn 40139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-ltrn 40143
This theorem is referenced by:  ltrncnv  40184  trlval2  40201  cdlemg14f  40691  cdlemg14g  40692
  Copyright terms: Public domain W3C validator