Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn Structured version   Visualization version   GIF version

Theorem isltrn 38060
Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
isltrn ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞   𝑊,𝑝,𝑞   𝐹,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑞,𝑝)   𝐻(𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)   (𝑞,𝑝)

Proof of Theorem isltrn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.l . . . 4 = (le‘𝐾)
2 ltrnset.j . . . 4 = (join‘𝐾)
3 ltrnset.m . . . 4 = (meet‘𝐾)
4 ltrnset.a . . . 4 𝐴 = (Atoms‘𝐾)
5 ltrnset.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnset.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
7 ltrnset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7ltrnset 38059 . . 3 ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
98eleq2d 2824 . 2 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇𝐹 ∈ {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))}))
10 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑝) = (𝐹𝑝))
1110oveq2d 7271 . . . . . . 7 (𝑓 = 𝐹 → (𝑝 (𝑓𝑝)) = (𝑝 (𝐹𝑝)))
1211oveq1d 7270 . . . . . 6 (𝑓 = 𝐹 → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑝 (𝐹𝑝)) 𝑊))
13 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑞) = (𝐹𝑞))
1413oveq2d 7271 . . . . . . 7 (𝑓 = 𝐹 → (𝑞 (𝑓𝑞)) = (𝑞 (𝐹𝑞)))
1514oveq1d 7270 . . . . . 6 (𝑓 = 𝐹 → ((𝑞 (𝑓𝑞)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))
1612, 15eqeq12d 2754 . . . . 5 (𝑓 = 𝐹 → (((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊) ↔ ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))
1716imbi2d 340 . . . 4 (𝑓 = 𝐹 → (((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
18172ralbidv 3122 . . 3 (𝑓 = 𝐹 → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
1918elrab 3617 . 2 (𝐹 ∈ {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))} ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊))))
209, 19bitrdi 286 1 ((𝐾𝐵𝑊𝐻) → (𝐹𝑇 ↔ (𝐹𝐷 ∧ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝐹𝑝)) 𝑊) = ((𝑞 (𝐹𝑞)) 𝑊)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  meetcmee 17945  Atomscatm 37204  LHypclh 37925  LDilcldil 38041  LTrncltrn 38042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-ltrn 38046
This theorem is referenced by:  isltrn2N  38061  ltrnu  38062  ltrnldil  38063  ltrncnv  38087  idltrn  38091  cdleme50ltrn  38498  ltrnco  38660
  Copyright terms: Public domain W3C validator