| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isltrn | Structured version Visualization version GIF version | ||
| Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
| Ref | Expression |
|---|---|
| ltrnset.l | ⊢ ≤ = (le‘𝐾) |
| ltrnset.j | ⊢ ∨ = (join‘𝐾) |
| ltrnset.m | ⊢ ∧ = (meet‘𝐾) |
| ltrnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| ltrnset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ltrnset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
| ltrnset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| isltrn | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrnset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | ltrnset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 3 | ltrnset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 4 | ltrnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | ltrnset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | ltrnset.d | . . . 4 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
| 7 | ltrnset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ltrnset 40112 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))}) |
| 9 | 8 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ 𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))})) |
| 10 | fveq1 6857 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
| 11 | 10 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
| 12 | 11 | oveq1d 7402 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
| 13 | fveq1 6857 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
| 14 | 13 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑞 ∨ (𝑓‘𝑞)) = (𝑞 ∨ (𝐹‘𝑞))) |
| 15 | 14 | oveq1d 7402 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
| 16 | 12, 15 | eqeq12d 2745 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) ↔ ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
| 17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 18 | 17 | 2ralbidv 3201 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 19 | 18 | elrab 3659 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))} ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
| 20 | 9, 19 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 lecple 17227 joincjn 18272 meetcmee 18273 Atomscatm 39256 LHypclh 39978 LDilcldil 40094 LTrncltrn 40095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-ltrn 40099 |
| This theorem is referenced by: isltrn2N 40114 ltrnu 40115 ltrnldil 40116 ltrncnv 40140 idltrn 40144 cdleme50ltrn 40551 ltrnco 40713 |
| Copyright terms: Public domain | W3C validator |