Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isltrn Structured version   Visualization version   GIF version

Theorem isltrn 39293
Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l ≀ = (leβ€˜πΎ)
ltrnset.j ∨ = (joinβ€˜πΎ)
ltrnset.m ∧ = (meetβ€˜πΎ)
ltrnset.a 𝐴 = (Atomsβ€˜πΎ)
ltrnset.h 𝐻 = (LHypβ€˜πΎ)
ltrnset.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
ltrnset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
isltrn ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š)))))
Distinct variable groups:   π‘ž,𝑝,𝐴   𝐾,𝑝,π‘ž   π‘Š,𝑝,π‘ž   𝐹,𝑝,π‘ž
Allowed substitution hints:   𝐡(π‘ž,𝑝)   𝐷(π‘ž,𝑝)   𝑇(π‘ž,𝑝)   𝐻(π‘ž,𝑝)   ∨ (π‘ž,𝑝)   ≀ (π‘ž,𝑝)   ∧ (π‘ž,𝑝)

Proof of Theorem isltrn
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.l . . . 4 ≀ = (leβ€˜πΎ)
2 ltrnset.j . . . 4 ∨ = (joinβ€˜πΎ)
3 ltrnset.m . . . 4 ∧ = (meetβ€˜πΎ)
4 ltrnset.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
5 ltrnset.h . . . 4 𝐻 = (LHypβ€˜πΎ)
6 ltrnset.d . . . 4 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
7 ltrnset.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
81, 2, 3, 4, 5, 6, 7ltrnset 39292 . . 3 ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ 𝑇 = {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))})
98eleq2d 2817 . 2 ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ 𝐹 ∈ {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))}))
10 fveq1 6889 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘) = (πΉβ€˜π‘))
1110oveq2d 7427 . . . . . . 7 (𝑓 = 𝐹 β†’ (𝑝 ∨ (π‘“β€˜π‘)) = (𝑝 ∨ (πΉβ€˜π‘)))
1211oveq1d 7426 . . . . . 6 (𝑓 = 𝐹 β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š))
13 fveq1 6889 . . . . . . . 8 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘ž) = (πΉβ€˜π‘ž))
1413oveq2d 7427 . . . . . . 7 (𝑓 = 𝐹 β†’ (π‘ž ∨ (π‘“β€˜π‘ž)) = (π‘ž ∨ (πΉβ€˜π‘ž)))
1514oveq1d 7426 . . . . . 6 (𝑓 = 𝐹 β†’ ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š))
1612, 15eqeq12d 2746 . . . . 5 (𝑓 = 𝐹 β†’ (((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š) ↔ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š)))
1716imbi2d 339 . . . 4 (𝑓 = 𝐹 β†’ (((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š)) ↔ ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š))))
18172ralbidv 3216 . . 3 (𝑓 = 𝐹 β†’ (βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š)) ↔ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š))))
1918elrab 3682 . 2 (𝐹 ∈ {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))} ↔ (𝐹 ∈ 𝐷 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š))))
209, 19bitrdi 286 1 ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (πΉβ€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (πΉβ€˜π‘ž)) ∧ π‘Š)))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430   class class class wbr 5147  β€˜cfv 6542  (class class class)co 7411  lecple 17208  joincjn 18268  meetcmee 18269  Atomscatm 38436  LHypclh 39158  LDilcldil 39274  LTrncltrn 39275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-ltrn 39279
This theorem is referenced by:  isltrn2N  39294  ltrnu  39295  ltrnldil  39296  ltrncnv  39320  idltrn  39324  cdleme50ltrn  39731  ltrnco  39893
  Copyright terms: Public domain W3C validator