![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isltrn | Structured version Visualization version GIF version |
Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ltrnset.l | ⊢ ≤ = (le‘𝐾) |
ltrnset.j | ⊢ ∨ = (join‘𝐾) |
ltrnset.m | ⊢ ∧ = (meet‘𝐾) |
ltrnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
ltrnset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
isltrn | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | ltrnset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | ltrnset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | ltrnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | ltrnset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnset.d | . . . 4 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
7 | ltrnset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ltrnset 40115 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))}) |
9 | 8 | eleq2d 2827 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ 𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))})) |
10 | fveq1 6913 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
11 | 10 | oveq2d 7454 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
12 | 11 | oveq1d 7453 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
13 | fveq1 6913 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
14 | 13 | oveq2d 7454 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑞 ∨ (𝑓‘𝑞)) = (𝑞 ∨ (𝐹‘𝑞))) |
15 | 14 | oveq1d 7453 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
16 | 12, 15 | eqeq12d 2753 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) ↔ ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
18 | 17 | 2ralbidv 3221 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
19 | 18 | elrab 3698 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))} ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
20 | 9, 19 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3061 {crab 3436 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 lecple 17314 joincjn 18378 meetcmee 18379 Atomscatm 39259 LHypclh 39981 LDilcldil 40097 LTrncltrn 40098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-ltrn 40102 |
This theorem is referenced by: isltrn2N 40117 ltrnu 40118 ltrnldil 40119 ltrncnv 40143 idltrn 40147 cdleme50ltrn 40554 ltrnco 40716 |
Copyright terms: Public domain | W3C validator |