Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isltrn | Structured version Visualization version GIF version |
Description: The predicate "is a lattice translation". Similar to definition of translation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.) |
Ref | Expression |
---|---|
ltrnset.l | ⊢ ≤ = (le‘𝐾) |
ltrnset.j | ⊢ ∨ = (join‘𝐾) |
ltrnset.m | ⊢ ∧ = (meet‘𝐾) |
ltrnset.a | ⊢ 𝐴 = (Atoms‘𝐾) |
ltrnset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnset.d | ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) |
ltrnset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
isltrn | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | ltrnset.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
3 | ltrnset.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
4 | ltrnset.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | ltrnset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | ltrnset.d | . . . 4 ⊢ 𝐷 = ((LDil‘𝐾)‘𝑊) | |
7 | ltrnset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ltrnset 38386 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → 𝑇 = {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))}) |
9 | 8 | eleq2d 2822 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ 𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))})) |
10 | fveq1 6824 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑝) = (𝐹‘𝑝)) | |
11 | 10 | oveq2d 7353 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑝 ∨ (𝑓‘𝑝)) = (𝑝 ∨ (𝐹‘𝑝))) |
12 | 11 | oveq1d 7352 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊)) |
13 | fveq1 6824 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑞) = (𝐹‘𝑞)) | |
14 | 13 | oveq2d 7353 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑞 ∨ (𝑓‘𝑞)) = (𝑞 ∨ (𝐹‘𝑞))) |
15 | 14 | oveq1d 7352 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)) |
16 | 12, 15 | eqeq12d 2752 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊) ↔ ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))) |
17 | 16 | imbi2d 340 | . . . 4 ⊢ (𝑓 = 𝐹 → (((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
18 | 17 | 2ralbidv 3208 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊)) ↔ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
19 | 18 | elrab 3634 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ 𝐷 ∣ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝑓‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝑓‘𝑞)) ∧ 𝑊))} ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊)))) |
20 | 9, 19 | bitrdi 286 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑊 ∈ 𝐻) → (𝐹 ∈ 𝑇 ↔ (𝐹 ∈ 𝐷 ∧ ∀𝑝 ∈ 𝐴 ∀𝑞 ∈ 𝐴 ((¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊) → ((𝑝 ∨ (𝐹‘𝑝)) ∧ 𝑊) = ((𝑞 ∨ (𝐹‘𝑞)) ∧ 𝑊))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 {crab 3403 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 lecple 17066 joincjn 18126 meetcmee 18127 Atomscatm 37530 LHypclh 38252 LDilcldil 38368 LTrncltrn 38369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-ltrn 38373 |
This theorem is referenced by: isltrn2N 38388 ltrnu 38389 ltrnldil 38390 ltrncnv 38414 idltrn 38418 cdleme50ltrn 38825 ltrnco 38987 |
Copyright terms: Public domain | W3C validator |