Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnval1 | Structured version Visualization version GIF version |
Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnval1.b | ⊢ 𝐵 = (Base‘𝐾) |
ltrnval1.l | ⊢ ≤ = (le‘𝐾) |
ltrnval1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ltrnval1.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
ltrnval1 | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnval1.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2738 | . . . 4 ⊢ ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) | |
3 | ltrnval1.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | ltrnldil 38144 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
5 | 4 | 3adant3 1131 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊)) |
6 | ltrnval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
7 | ltrnval1.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | 6, 7, 1, 2 | ldilval 38135 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
9 | 5, 8 | syld3an2 1410 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐹‘𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ‘cfv 6426 Basecbs 16922 lecple 16979 LHypclh 38006 LDilcldil 38122 LTrncltrn 38123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pr 5350 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-ov 7270 df-ldil 38126 df-ltrn 38127 |
This theorem is referenced by: ltrnid 38157 ltrnatb 38159 ltrnel 38161 ltrncnvel 38164 ltrneq 38171 cdlemc2 38214 cdlemd2 38221 cdlemg7N 38648 |
Copyright terms: Public domain | W3C validator |