Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnval1 Structured version   Visualization version   GIF version

Theorem ltrnval1 39833
Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnval1.b 𝐵 = (Base‘𝐾)
ltrnval1.l = (le‘𝐾)
ltrnval1.h 𝐻 = (LHyp‘𝐾)
ltrnval1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnval1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ltrnval1
StepHypRef Expression
1 ltrnval1.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2726 . . . 4 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnval1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 39821 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
543adant3 1129 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
6 ltrnval1.b . . 3 𝐵 = (Base‘𝐾)
7 ltrnval1.l . . 3 = (le‘𝐾)
86, 7, 1, 2ldilval 39812 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
95, 8syld3an2 1408 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099   class class class wbr 5153  cfv 6554  Basecbs 17213  lecple 17273  LHypclh 39683  LDilcldil 39799  LTrncltrn 39800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-ldil 39803  df-ltrn 39804
This theorem is referenced by:  ltrnid  39834  ltrnatb  39836  ltrnel  39838  ltrncnvel  39841  ltrneq  39848  cdlemc2  39891  cdlemd2  39898  cdlemg7N  40325
  Copyright terms: Public domain W3C validator