Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnval1 Structured version   Visualization version   GIF version

Theorem ltrnval1 37340
Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnval1.b 𝐵 = (Base‘𝐾)
ltrnval1.l = (le‘𝐾)
ltrnval1.h 𝐻 = (LHyp‘𝐾)
ltrnval1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnval1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ltrnval1
StepHypRef Expression
1 ltrnval1.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2824 . . . 4 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnval1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 37328 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
543adant3 1129 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
6 ltrnval1.b . . 3 𝐵 = (Base‘𝐾)
7 ltrnval1.l . . 3 = (le‘𝐾)
86, 7, 1, 2ldilval 37319 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
95, 8syld3an2 1408 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115   class class class wbr 5052  cfv 6343  Basecbs 16479  lecple 16568  LHypclh 37190  LDilcldil 37306  LTrncltrn 37307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4276  df-if 4450  df-sn 4550  df-pr 4552  df-op 4556  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7148  df-ldil 37310  df-ltrn 37311
This theorem is referenced by:  ltrnid  37341  ltrnatb  37343  ltrnel  37345  ltrncnvel  37348  ltrneq  37355  cdlemc2  37398  cdlemd2  37405  cdlemg7N  37832
  Copyright terms: Public domain W3C validator