Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnval1 Structured version   Visualization version   GIF version

Theorem ltrnval1 36208
Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
ltrnval1.b 𝐵 = (Base‘𝐾)
ltrnval1.l = (le‘𝐾)
ltrnval1.h 𝐻 = (LHyp‘𝐾)
ltrnval1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnval1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)

Proof of Theorem ltrnval1
StepHypRef Expression
1 ltrnval1.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2824 . . . 4 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
3 ltrnval1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
41, 2, 3ltrnldil 36196 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
543adant3 1168 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
6 ltrnval1.b . . 3 𝐵 = (Base‘𝐾)
7 ltrnval1.l . . 3 = (le‘𝐾)
86, 7, 1, 2ldilval 36187 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
95, 8syld3an2 1537 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑋𝐵𝑋 𝑊)) → (𝐹𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166   class class class wbr 4872  cfv 6122  Basecbs 16221  lecple 16311  LHypclh 36058  LDilcldil 36174  LTrncltrn 36175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pr 5126
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-ov 6907  df-ldil 36178  df-ltrn 36179
This theorem is referenced by:  ltrnid  36209  ltrnatb  36211  ltrnel  36213  ltrncnvel  36216  ltrneq  36223  cdlemc2  36266  cdlemd2  36273  cdlemg7N  36700
  Copyright terms: Public domain W3C validator