![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltrnval1 | Structured version Visualization version GIF version |
Description: Value of a lattice translation under its co-atom. (Contributed by NM, 20-May-2012.) |
Ref | Expression |
---|---|
ltrnval1.b | β’ π΅ = (BaseβπΎ) |
ltrnval1.l | β’ β€ = (leβπΎ) |
ltrnval1.h | β’ π» = (LHypβπΎ) |
ltrnval1.t | β’ π = ((LTrnβπΎ)βπ) |
Ref | Expression |
---|---|
ltrnval1 | β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrnval1.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | eqid 2730 | . . . 4 β’ ((LDilβπΎ)βπ) = ((LDilβπΎ)βπ) | |
3 | ltrnval1.t | . . . 4 β’ π = ((LTrnβπΎ)βπ) | |
4 | 1, 2, 3 | ltrnldil 39296 | . . 3 β’ (((πΎ β π β§ π β π») β§ πΉ β π) β πΉ β ((LDilβπΎ)βπ)) |
5 | 4 | 3adant3 1130 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β€ π)) β πΉ β ((LDilβπΎ)βπ)) |
6 | ltrnval1.b | . . 3 β’ π΅ = (BaseβπΎ) | |
7 | ltrnval1.l | . . 3 β’ β€ = (leβπΎ) | |
8 | 6, 7, 1, 2 | ldilval 39287 | . 2 β’ (((πΎ β π β§ π β π») β§ πΉ β ((LDilβπΎ)βπ) β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) |
9 | 5, 8 | syld3an2 1409 | 1 β’ (((πΎ β π β§ π β π») β§ πΉ β π β§ (π β π΅ β§ π β€ π)) β (πΉβπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 Basecbs 17148 lecple 17208 LHypclh 39158 LDilcldil 39274 LTrncltrn 39275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-ldil 39278 df-ltrn 39279 |
This theorem is referenced by: ltrnid 39309 ltrnatb 39311 ltrnel 39313 ltrncnvel 39316 ltrneq 39323 cdlemc2 39366 cdlemd2 39373 cdlemg7N 39800 |
Copyright terms: Public domain | W3C validator |