Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Structured version   Visualization version   GIF version

Theorem ltrnco 40891
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h 𝐻 = (LHyp‘𝐾)
ltrnco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)

Proof of Theorem ltrnco
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ltrnco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2733 . . . . 5 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
4 ltrnco.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnldil 40294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
653adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
72, 3, 4ltrnldil 40294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
873adant2 1131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
92, 3ldilco 40288 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
101, 6, 8, 9syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
11 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
1412, 13jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
16 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
1715, 16jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊))
18 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹𝑇)
19 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐺𝑇)
20 eqid 2733 . . . . . 6 (le‘𝐾) = (le‘𝐾)
21 eqid 2733 . . . . . 6 (join‘𝐾) = (join‘𝐾)
22 eqid 2733 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
23 eqid 2733 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
2420, 21, 22, 23, 2, 4cdlemg41 40890 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
2511, 14, 17, 18, 19, 24syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
26253exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))))
2726ralrimivv 3174 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))
2820, 21, 22, 23, 2, 3, 4isltrn 40291 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
29283ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
3010, 27, 29mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  ccom 5625  cfv 6489  (class class class)co 7355  lecple 17175  joincjn 18225  meetcmee 18226  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LDilcldil 40272  LTrncltrn 40273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331
This theorem is referenced by:  trlcocnv  40892  trlcoabs2N  40894  trlcoat  40895  trlconid  40897  trlcolem  40898  trlcone  40900  cdlemg44  40905  cdlemg46  40907  cdlemg47  40908  trljco  40912  tgrpgrplem  40921  tendoidcl  40941  tendococl  40944  tendoplcl2  40950  tendoplco2  40951  tendoplcl  40953  tendo0co2  40960  tendoicl  40968  cdlemh1  40987  cdlemh2  40988  cdlemh  40989  cdlemi2  40991  cdlemi  40992  cdlemk2  41004  cdlemk3  41005  cdlemk4  41006  cdlemk8  41010  cdlemk9  41011  cdlemk9bN  41012  cdlemkvcl  41014  cdlemk10  41015  cdlemk11  41021  cdlemk12  41022  cdlemk14  41026  cdlemk11u  41043  cdlemk12u  41044  cdlemk37  41086  cdlemkfid1N  41093  cdlemkid1  41094  cdlemk45  41119  cdlemk47  41121  cdlemk48  41122  cdlemk50  41124  cdlemk52  41126  cdlemk53a  41127  cdlemk54  41130  cdlemk55a  41131  cdlemk55u1  41137  cdlemk55u  41138  tendospcanN  41195  dvalveclem  41197  dialss  41218  dia2dimlem4  41239  dvhvaddcl  41267  diblss  41342  cdlemn3  41369  dihopelvalcpre  41420  dih1  41458  dihglbcpreN  41472  dihjatcclem3  41592  dihjatcclem4  41593
  Copyright terms: Public domain W3C validator