Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Structured version   Visualization version   GIF version

Theorem ltrnco 40101
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h 𝐻 = (LHypβ€˜πΎ)
ltrnco.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnco (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)

Proof of Theorem ltrnco
Dummy variables π‘ž 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 ltrnco.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
3 eqid 2726 . . . . 5 ((LDilβ€˜πΎ)β€˜π‘Š) = ((LDilβ€˜πΎ)β€˜π‘Š)
4 ltrnco.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
52, 3, 4ltrnldil 39504 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
653adant3 1129 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
72, 3, 4ltrnldil 39504 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
873adant2 1128 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
92, 3ldilco 39498 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š)) β†’ (𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
101, 6, 8, 9syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
11 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 simp2l 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
13 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ Β¬ 𝑝(leβ€˜πΎ)π‘Š)
1412, 13jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))
15 simp2r 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ π‘ž ∈ (Atomsβ€˜πΎ))
16 simp3r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ Β¬ π‘ž(leβ€˜πΎ)π‘Š)
1715, 16jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š))
18 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝐹 ∈ 𝑇)
19 simp13 1202 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝐺 ∈ 𝑇)
20 eqid 2726 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
21 eqid 2726 . . . . . 6 (joinβ€˜πΎ) = (joinβ€˜πΎ)
22 eqid 2726 . . . . . 6 (meetβ€˜πΎ) = (meetβ€˜πΎ)
23 eqid 2726 . . . . . 6 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
2420, 21, 22, 23, 2, 4cdlemg41 40100 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))
2511, 14, 17, 18, 19, 24syl122anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))
26253exp 1116 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) β†’ ((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))))
2726ralrimivv 3192 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))
2820, 21, 22, 23, 2, 3, 4isltrn 39501 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))))
29283ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))))
3010, 27, 29mpbir2and 710 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055   class class class wbr 5141   ∘ ccom 5673  β€˜cfv 6536  (class class class)co 7404  lecple 17211  joincjn 18274  meetcmee 18275  Atomscatm 38644  HLchlt 38731  LHypclh 39366  LDilcldil 39482  LTrncltrn 39483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-riotaBAD 38334
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7971  df-2nd 7972  df-undef 8256  df-map 8821  df-proset 18258  df-poset 18276  df-plt 18293  df-lub 18309  df-glb 18310  df-join 18311  df-meet 18312  df-p0 18388  df-p1 18389  df-lat 18395  df-clat 18462  df-oposet 38557  df-ol 38559  df-oml 38560  df-covers 38647  df-ats 38648  df-atl 38679  df-cvlat 38703  df-hlat 38732  df-llines 38880  df-lplanes 38881  df-lvols 38882  df-lines 38883  df-psubsp 38885  df-pmap 38886  df-padd 39178  df-lhyp 39370  df-laut 39371  df-ldil 39486  df-ltrn 39487  df-trl 39541
This theorem is referenced by:  trlcocnv  40102  trlcoabs2N  40104  trlcoat  40105  trlconid  40107  trlcolem  40108  trlcone  40110  cdlemg44  40115  cdlemg46  40117  cdlemg47  40118  trljco  40122  tgrpgrplem  40131  tendoidcl  40151  tendococl  40154  tendoplcl2  40160  tendoplco2  40161  tendoplcl  40163  tendo0co2  40170  tendoicl  40178  cdlemh1  40197  cdlemh2  40198  cdlemh  40199  cdlemi2  40201  cdlemi  40202  cdlemk2  40214  cdlemk3  40215  cdlemk4  40216  cdlemk8  40220  cdlemk9  40221  cdlemk9bN  40222  cdlemkvcl  40224  cdlemk10  40225  cdlemk11  40231  cdlemk12  40232  cdlemk14  40236  cdlemk11u  40253  cdlemk12u  40254  cdlemk37  40296  cdlemkfid1N  40303  cdlemkid1  40304  cdlemk45  40329  cdlemk47  40331  cdlemk48  40332  cdlemk50  40334  cdlemk52  40336  cdlemk53a  40337  cdlemk54  40340  cdlemk55a  40341  cdlemk55u1  40347  cdlemk55u  40348  tendospcanN  40405  dvalveclem  40407  dialss  40428  dia2dimlem4  40449  dvhvaddcl  40477  diblss  40552  cdlemn3  40579  dihopelvalcpre  40630  dih1  40668  dihglbcpreN  40682  dihjatcclem3  40802  dihjatcclem4  40803
  Copyright terms: Public domain W3C validator