Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Structured version   Visualization version   GIF version

Theorem ltrnco 40686
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h 𝐻 = (LHyp‘𝐾)
ltrnco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)

Proof of Theorem ltrnco
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ltrnco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . . . 5 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
4 ltrnco.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnldil 40089 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
653adant3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
72, 3, 4ltrnldil 40089 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
873adant2 1131 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
92, 3ldilco 40083 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
101, 6, 8, 9syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
11 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
1412, 13jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
16 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
1715, 16jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊))
18 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹𝑇)
19 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐺𝑇)
20 eqid 2729 . . . . . 6 (le‘𝐾) = (le‘𝐾)
21 eqid 2729 . . . . . 6 (join‘𝐾) = (join‘𝐾)
22 eqid 2729 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
23 eqid 2729 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
2420, 21, 22, 23, 2, 4cdlemg41 40685 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
2511, 14, 17, 18, 19, 24syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
26253exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))))
2726ralrimivv 3176 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))
2820, 21, 22, 23, 2, 3, 4isltrn 40086 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
29283ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
3010, 27, 29mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  ccom 5635  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LDilcldil 40067  LTrncltrn 40068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126
This theorem is referenced by:  trlcocnv  40687  trlcoabs2N  40689  trlcoat  40690  trlconid  40692  trlcolem  40693  trlcone  40695  cdlemg44  40700  cdlemg46  40702  cdlemg47  40703  trljco  40707  tgrpgrplem  40716  tendoidcl  40736  tendococl  40739  tendoplcl2  40745  tendoplco2  40746  tendoplcl  40748  tendo0co2  40755  tendoicl  40763  cdlemh1  40782  cdlemh2  40783  cdlemh  40784  cdlemi2  40786  cdlemi  40787  cdlemk2  40799  cdlemk3  40800  cdlemk4  40801  cdlemk8  40805  cdlemk9  40806  cdlemk9bN  40807  cdlemkvcl  40809  cdlemk10  40810  cdlemk11  40816  cdlemk12  40817  cdlemk14  40821  cdlemk11u  40838  cdlemk12u  40839  cdlemk37  40881  cdlemkfid1N  40888  cdlemkid1  40889  cdlemk45  40914  cdlemk47  40916  cdlemk48  40917  cdlemk50  40919  cdlemk52  40921  cdlemk53a  40922  cdlemk54  40925  cdlemk55a  40926  cdlemk55u1  40932  cdlemk55u  40933  tendospcanN  40990  dvalveclem  40992  dialss  41013  dia2dimlem4  41034  dvhvaddcl  41062  diblss  41137  cdlemn3  41164  dihopelvalcpre  41215  dih1  41253  dihglbcpreN  41267  dihjatcclem3  41387  dihjatcclem4  41388
  Copyright terms: Public domain W3C validator