Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Structured version   Visualization version   GIF version

Theorem ltrnco 40224
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h 𝐻 = (LHypβ€˜πΎ)
ltrnco.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnco (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)

Proof of Theorem ltrnco
Dummy variables π‘ž 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 ltrnco.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
3 eqid 2728 . . . . 5 ((LDilβ€˜πΎ)β€˜π‘Š) = ((LDilβ€˜πΎ)β€˜π‘Š)
4 ltrnco.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
52, 3, 4ltrnldil 39627 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
653adant3 1129 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
72, 3, 4ltrnldil 39627 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) β†’ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
873adant2 1128 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
92, 3ldilco 39621 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ 𝐺 ∈ ((LDilβ€˜πΎ)β€˜π‘Š)) β†’ (𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
101, 6, 8, 9syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š))
11 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
12 simp2l 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝑝 ∈ (Atomsβ€˜πΎ))
13 simp3l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ Β¬ 𝑝(leβ€˜πΎ)π‘Š)
1412, 13jca 510 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š))
15 simp2r 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ π‘ž ∈ (Atomsβ€˜πΎ))
16 simp3r 1199 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ Β¬ π‘ž(leβ€˜πΎ)π‘Š)
1715, 16jca 510 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š))
18 simp12 1201 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝐹 ∈ 𝑇)
19 simp13 1202 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ 𝐺 ∈ 𝑇)
20 eqid 2728 . . . . . 6 (leβ€˜πΎ) = (leβ€˜πΎ)
21 eqid 2728 . . . . . 6 (joinβ€˜πΎ) = (joinβ€˜πΎ)
22 eqid 2728 . . . . . 6 (meetβ€˜πΎ) = (meetβ€˜πΎ)
23 eqid 2728 . . . . . 6 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
2420, 21, 22, 23, 2, 4cdlemg41 40223 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑝 ∈ (Atomsβ€˜πΎ) ∧ Β¬ 𝑝(leβ€˜πΎ)π‘Š) ∧ (π‘ž ∈ (Atomsβ€˜πΎ) ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))
2511, 14, 17, 18, 19, 24syl122anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) ∧ (Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š)) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))
26253exp 1116 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((𝑝 ∈ (Atomsβ€˜πΎ) ∧ π‘ž ∈ (Atomsβ€˜πΎ)) β†’ ((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š))))
2726ralrimivv 3196 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))
2820, 21, 22, 23, 2, 3, 4isltrn 39624 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))))
29283ad2ant1 1130 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ ((𝐹 ∘ 𝐺) ∈ 𝑇 ↔ ((𝐹 ∘ 𝐺) ∈ ((LDilβ€˜πΎ)β€˜π‘Š) ∧ βˆ€π‘ ∈ (Atomsβ€˜πΎ)βˆ€π‘ž ∈ (Atomsβ€˜πΎ)((Β¬ 𝑝(leβ€˜πΎ)π‘Š ∧ Β¬ π‘ž(leβ€˜πΎ)π‘Š) β†’ ((𝑝(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘))(meetβ€˜πΎ)π‘Š) = ((π‘ž(joinβ€˜πΎ)((𝐹 ∘ 𝐺)β€˜π‘ž))(meetβ€˜πΎ)π‘Š)))))
3010, 27, 29mpbir2and 711 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) β†’ (𝐹 ∘ 𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058   class class class wbr 5152   ∘ ccom 5686  β€˜cfv 6553  (class class class)co 7426  lecple 17247  joincjn 18310  meetcmee 18311  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LDilcldil 39605  LTrncltrn 39606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-undef 8285  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664
This theorem is referenced by:  trlcocnv  40225  trlcoabs2N  40227  trlcoat  40228  trlconid  40230  trlcolem  40231  trlcone  40233  cdlemg44  40238  cdlemg46  40240  cdlemg47  40241  trljco  40245  tgrpgrplem  40254  tendoidcl  40274  tendococl  40277  tendoplcl2  40283  tendoplco2  40284  tendoplcl  40286  tendo0co2  40293  tendoicl  40301  cdlemh1  40320  cdlemh2  40321  cdlemh  40322  cdlemi2  40324  cdlemi  40325  cdlemk2  40337  cdlemk3  40338  cdlemk4  40339  cdlemk8  40343  cdlemk9  40344  cdlemk9bN  40345  cdlemkvcl  40347  cdlemk10  40348  cdlemk11  40354  cdlemk12  40355  cdlemk14  40359  cdlemk11u  40376  cdlemk12u  40377  cdlemk37  40419  cdlemkfid1N  40426  cdlemkid1  40427  cdlemk45  40452  cdlemk47  40454  cdlemk48  40455  cdlemk50  40457  cdlemk52  40459  cdlemk53a  40460  cdlemk54  40463  cdlemk55a  40464  cdlemk55u1  40470  cdlemk55u  40471  tendospcanN  40528  dvalveclem  40530  dialss  40551  dia2dimlem4  40572  dvhvaddcl  40600  diblss  40675  cdlemn3  40702  dihopelvalcpre  40753  dih1  40791  dihglbcpreN  40805  dihjatcclem3  40925  dihjatcclem4  40926
  Copyright terms: Public domain W3C validator