Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnco Structured version   Visualization version   GIF version

Theorem ltrnco 40721
Description: The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
ltrnco.h 𝐻 = (LHyp‘𝐾)
ltrnco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)

Proof of Theorem ltrnco
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ltrnco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2737 . . . . 5 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
4 ltrnco.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
52, 3, 4ltrnldil 40124 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
653adant3 1133 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐹 ∈ ((LDil‘𝐾)‘𝑊))
72, 3, 4ltrnldil 40124 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
873adant2 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → 𝐺 ∈ ((LDil‘𝐾)‘𝑊))
92, 3ldilco 40118 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹 ∈ ((LDil‘𝐾)‘𝑊) ∧ 𝐺 ∈ ((LDil‘𝐾)‘𝑊)) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
101, 6, 8, 9syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊))
11 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
13 simp3l 1202 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
1412, 13jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊))
15 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
16 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
1715, 16jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊))
18 simp12 1205 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐹𝑇)
19 simp13 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐺𝑇)
20 eqid 2737 . . . . . 6 (le‘𝐾) = (le‘𝐾)
21 eqid 2737 . . . . . 6 (join‘𝐾) = (join‘𝐾)
22 eqid 2737 . . . . . 6 (meet‘𝐾) = (meet‘𝐾)
23 eqid 2737 . . . . . 6 (Atoms‘𝐾) = (Atoms‘𝐾)
2420, 21, 22, 23, 2, 4cdlemg41 40720 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) ∧ (𝐹𝑇𝐺𝑇)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
2511, 14, 17, 18, 19, 24syl122anc 1381 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))
26253exp 1120 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾)) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊))))
2726ralrimivv 3200 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))
2820, 21, 22, 23, 2, 3, 4isltrn 40121 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
29283ad2ant1 1134 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ((𝐹𝐺) ∈ 𝑇 ↔ ((𝐹𝐺) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)((𝐹𝐺)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)((𝐹𝐺)‘𝑞))(meet‘𝐾)𝑊)))))
3010, 27, 29mpbir2and 713 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝐹𝐺) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  ccom 5689  cfv 6561  (class class class)co 7431  lecple 17304  joincjn 18357  meetcmee 18358  Atomscatm 39264  HLchlt 39351  LHypclh 39986  LDilcldil 40102  LTrncltrn 40103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-riotaBAD 38954
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-undef 8298  df-map 8868  df-proset 18340  df-poset 18359  df-plt 18375  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-p0 18470  df-p1 18471  df-lat 18477  df-clat 18544  df-oposet 39177  df-ol 39179  df-oml 39180  df-covers 39267  df-ats 39268  df-atl 39299  df-cvlat 39323  df-hlat 39352  df-llines 39500  df-lplanes 39501  df-lvols 39502  df-lines 39503  df-psubsp 39505  df-pmap 39506  df-padd 39798  df-lhyp 39990  df-laut 39991  df-ldil 40106  df-ltrn 40107  df-trl 40161
This theorem is referenced by:  trlcocnv  40722  trlcoabs2N  40724  trlcoat  40725  trlconid  40727  trlcolem  40728  trlcone  40730  cdlemg44  40735  cdlemg46  40737  cdlemg47  40738  trljco  40742  tgrpgrplem  40751  tendoidcl  40771  tendococl  40774  tendoplcl2  40780  tendoplco2  40781  tendoplcl  40783  tendo0co2  40790  tendoicl  40798  cdlemh1  40817  cdlemh2  40818  cdlemh  40819  cdlemi2  40821  cdlemi  40822  cdlemk2  40834  cdlemk3  40835  cdlemk4  40836  cdlemk8  40840  cdlemk9  40841  cdlemk9bN  40842  cdlemkvcl  40844  cdlemk10  40845  cdlemk11  40851  cdlemk12  40852  cdlemk14  40856  cdlemk11u  40873  cdlemk12u  40874  cdlemk37  40916  cdlemkfid1N  40923  cdlemkid1  40924  cdlemk45  40949  cdlemk47  40951  cdlemk48  40952  cdlemk50  40954  cdlemk52  40956  cdlemk53a  40957  cdlemk54  40960  cdlemk55a  40961  cdlemk55u1  40967  cdlemk55u  40968  tendospcanN  41025  dvalveclem  41027  dialss  41048  dia2dimlem4  41069  dvhvaddcl  41097  diblss  41172  cdlemn3  41199  dihopelvalcpre  41250  dih1  41288  dihglbcpreN  41302  dihjatcclem3  41422  dihjatcclem4  41423
  Copyright terms: Public domain W3C validator