Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Structured version   Visualization version   GIF version

Theorem ltrnset 40112
Description: The set of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnset ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Distinct variable groups:   𝑞,𝑝,𝐴   𝐷,𝑓   𝑓,𝑝,𝑞,𝐾   𝑓,𝑊,𝑝,𝑞
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)

Proof of Theorem ltrnset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
2 ltrnset.l . . . . 5 = (le‘𝐾)
3 ltrnset.j . . . . 5 = (join‘𝐾)
4 ltrnset.m . . . . 5 = (meet‘𝐾)
5 ltrnset.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
72, 3, 4, 5, 6ltrnfset 40111 . . . 4 (𝐾𝐵 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
87fveq1d 6860 . . 3 (𝐾𝐵 → ((LTrn‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
91, 8eqtrid 2776 . 2 (𝐾𝐵𝑇 = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
10 fveq2 6858 . . . . 5 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = ((LDil‘𝐾)‘𝑊))
11 ltrnset.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
1210, 11eqtr4di 2782 . . . 4 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = 𝐷)
13 breq2 5111 . . . . . . . 8 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1413notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
15 breq2 5111 . . . . . . . 8 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
1615notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
1714, 16anbi12d 632 . . . . . 6 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
18 oveq2 7395 . . . . . . 7 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
19 oveq2 7395 . . . . . . 7 (𝑤 = 𝑊 → ((𝑞 (𝑓𝑞)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑊))
2018, 19eqeq12d 2745 . . . . . 6 (𝑤 = 𝑊 → (((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊)))
2117, 20imbi12d 344 . . . . 5 (𝑤 = 𝑊 → (((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
22212ralbidv 3201 . . . 4 (𝑤 = 𝑊 → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
2312, 22rabeqbidv 3424 . . 3 (𝑤 = 𝑊 → {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))} = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
24 eqid 2729 . . 3 (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
2511fvexi 6872 . . . 4 𝐷 ∈ V
2625rabex 5294 . . 3 {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))} ∈ V
2723, 24, 26fvmpt 6968 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊) = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
289, 27sylan9eq 2784 1 ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  lecple 17227  joincjn 18272  meetcmee 18273  Atomscatm 39256  LHypclh 39978  LDilcldil 40094  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-ltrn 40099
This theorem is referenced by:  isltrn  40113
  Copyright terms: Public domain W3C validator