Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Structured version   Visualization version   GIF version

Theorem ltrnset 39037
Description: The set of lattice translations for a fiducial co-atom π‘Š. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l ≀ = (leβ€˜πΎ)
ltrnset.j ∨ = (joinβ€˜πΎ)
ltrnset.m ∧ = (meetβ€˜πΎ)
ltrnset.a 𝐴 = (Atomsβ€˜πΎ)
ltrnset.h 𝐻 = (LHypβ€˜πΎ)
ltrnset.d 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
ltrnset.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
ltrnset ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ 𝑇 = {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))})
Distinct variable groups:   π‘ž,𝑝,𝐴   𝐷,𝑓   𝑓,𝑝,π‘ž,𝐾   𝑓,π‘Š,𝑝,π‘ž
Allowed substitution hints:   𝐴(𝑓)   𝐡(𝑓,π‘ž,𝑝)   𝐷(π‘ž,𝑝)   𝑇(𝑓,π‘ž,𝑝)   𝐻(𝑓,π‘ž,𝑝)   ∨ (𝑓,π‘ž,𝑝)   ≀ (𝑓,π‘ž,𝑝)   ∧ (𝑓,π‘ž,𝑝)

Proof of Theorem ltrnset
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
2 ltrnset.l . . . . 5 ≀ = (leβ€˜πΎ)
3 ltrnset.j . . . . 5 ∨ = (joinβ€˜πΎ)
4 ltrnset.m . . . . 5 ∧ = (meetβ€˜πΎ)
5 ltrnset.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
6 ltrnset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
72, 3, 4, 5, 6ltrnfset 39036 . . . 4 (𝐾 ∈ 𝐡 β†’ (LTrnβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))}))
87fveq1d 6894 . . 3 (𝐾 ∈ 𝐡 β†’ ((LTrnβ€˜πΎ)β€˜π‘Š) = ((𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))})β€˜π‘Š))
91, 8eqtrid 2785 . 2 (𝐾 ∈ 𝐡 β†’ 𝑇 = ((𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))})β€˜π‘Š))
10 fveq2 6892 . . . . 5 (𝑀 = π‘Š β†’ ((LDilβ€˜πΎ)β€˜π‘€) = ((LDilβ€˜πΎ)β€˜π‘Š))
11 ltrnset.d . . . . 5 𝐷 = ((LDilβ€˜πΎ)β€˜π‘Š)
1210, 11eqtr4di 2791 . . . 4 (𝑀 = π‘Š β†’ ((LDilβ€˜πΎ)β€˜π‘€) = 𝐷)
13 breq2 5153 . . . . . . . 8 (𝑀 = π‘Š β†’ (𝑝 ≀ 𝑀 ↔ 𝑝 ≀ π‘Š))
1413notbid 318 . . . . . . 7 (𝑀 = π‘Š β†’ (Β¬ 𝑝 ≀ 𝑀 ↔ Β¬ 𝑝 ≀ π‘Š))
15 breq2 5153 . . . . . . . 8 (𝑀 = π‘Š β†’ (π‘ž ≀ 𝑀 ↔ π‘ž ≀ π‘Š))
1615notbid 318 . . . . . . 7 (𝑀 = π‘Š β†’ (Β¬ π‘ž ≀ 𝑀 ↔ Β¬ π‘ž ≀ π‘Š))
1714, 16anbi12d 632 . . . . . 6 (𝑀 = π‘Š β†’ ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) ↔ (Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š)))
18 oveq2 7417 . . . . . . 7 (𝑀 = π‘Š β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š))
19 oveq2 7417 . . . . . . 7 (𝑀 = π‘Š β†’ ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))
2018, 19eqeq12d 2749 . . . . . 6 (𝑀 = π‘Š β†’ (((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀) ↔ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š)))
2117, 20imbi12d 345 . . . . 5 (𝑀 = π‘Š β†’ (((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀)) ↔ ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))))
22212ralbidv 3219 . . . 4 (𝑀 = π‘Š β†’ (βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀)) ↔ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))))
2312, 22rabeqbidv 3450 . . 3 (𝑀 = π‘Š β†’ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))} = {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))})
24 eqid 2733 . . 3 (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))}) = (𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))})
2511fvexi 6906 . . . 4 𝐷 ∈ V
2625rabex 5333 . . 3 {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))} ∈ V
2723, 24, 26fvmpt 6999 . 2 (π‘Š ∈ 𝐻 β†’ ((𝑀 ∈ 𝐻 ↦ {𝑓 ∈ ((LDilβ€˜πΎ)β€˜π‘€) ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ 𝑀 ∧ Β¬ π‘ž ≀ 𝑀) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ 𝑀) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ 𝑀))})β€˜π‘Š) = {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))})
289, 27sylan9eq 2793 1 ((𝐾 ∈ 𝐡 ∧ π‘Š ∈ 𝐻) β†’ 𝑇 = {𝑓 ∈ 𝐷 ∣ βˆ€π‘ ∈ 𝐴 βˆ€π‘ž ∈ 𝐴 ((Β¬ 𝑝 ≀ π‘Š ∧ Β¬ π‘ž ≀ π‘Š) β†’ ((𝑝 ∨ (π‘“β€˜π‘)) ∧ π‘Š) = ((π‘ž ∨ (π‘“β€˜π‘ž)) ∧ π‘Š))})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   class class class wbr 5149   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409  lecple 17204  joincjn 18264  meetcmee 18265  Atomscatm 38181  LHypclh 38903  LDilcldil 39019  LTrncltrn 39020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-ltrn 39024
This theorem is referenced by:  isltrn  39038
  Copyright terms: Public domain W3C validator