Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Structured version   Visualization version   GIF version

Theorem ltrnset 40156
Description: The set of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnset ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Distinct variable groups:   𝑞,𝑝,𝐴   𝐷,𝑓   𝑓,𝑝,𝑞,𝐾   𝑓,𝑊,𝑝,𝑞
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)

Proof of Theorem ltrnset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
2 ltrnset.l . . . . 5 = (le‘𝐾)
3 ltrnset.j . . . . 5 = (join‘𝐾)
4 ltrnset.m . . . . 5 = (meet‘𝐾)
5 ltrnset.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
72, 3, 4, 5, 6ltrnfset 40155 . . . 4 (𝐾𝐵 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
87fveq1d 6824 . . 3 (𝐾𝐵 → ((LTrn‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
91, 8eqtrid 2778 . 2 (𝐾𝐵𝑇 = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
10 fveq2 6822 . . . . 5 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = ((LDil‘𝐾)‘𝑊))
11 ltrnset.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
1210, 11eqtr4di 2784 . . . 4 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = 𝐷)
13 breq2 5095 . . . . . . . 8 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1413notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
15 breq2 5095 . . . . . . . 8 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
1615notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
1714, 16anbi12d 632 . . . . . 6 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
18 oveq2 7354 . . . . . . 7 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
19 oveq2 7354 . . . . . . 7 (𝑤 = 𝑊 → ((𝑞 (𝑓𝑞)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑊))
2018, 19eqeq12d 2747 . . . . . 6 (𝑤 = 𝑊 → (((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊)))
2117, 20imbi12d 344 . . . . 5 (𝑤 = 𝑊 → (((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
22212ralbidv 3196 . . . 4 (𝑤 = 𝑊 → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
2312, 22rabeqbidv 3413 . . 3 (𝑤 = 𝑊 → {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))} = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
24 eqid 2731 . . 3 (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
2511fvexi 6836 . . . 4 𝐷 ∈ V
2625rabex 5277 . . 3 {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))} ∈ V
2723, 24, 26fvmpt 6929 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊) = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
289, 27sylan9eq 2786 1 ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  lecple 17165  joincjn 18214  meetcmee 18215  Atomscatm 39301  LHypclh 40022  LDilcldil 40138  LTrncltrn 40139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-ltrn 40143
This theorem is referenced by:  isltrn  40157
  Copyright terms: Public domain W3C validator