Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnset Structured version   Visualization version   GIF version

Theorem ltrnset 38128
Description: The set of lattice translations for a fiducial co-atom 𝑊. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ltrnset.l = (le‘𝐾)
ltrnset.j = (join‘𝐾)
ltrnset.m = (meet‘𝐾)
ltrnset.a 𝐴 = (Atoms‘𝐾)
ltrnset.h 𝐻 = (LHyp‘𝐾)
ltrnset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
ltrnset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnset ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Distinct variable groups:   𝑞,𝑝,𝐴   𝐷,𝑓   𝑓,𝑝,𝑞,𝐾   𝑓,𝑊,𝑝,𝑞
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑞,𝑝)   𝐷(𝑞,𝑝)   𝑇(𝑓,𝑞,𝑝)   𝐻(𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)   (𝑓,𝑞,𝑝)

Proof of Theorem ltrnset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrnset.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
2 ltrnset.l . . . . 5 = (le‘𝐾)
3 ltrnset.j . . . . 5 = (join‘𝐾)
4 ltrnset.m . . . . 5 = (meet‘𝐾)
5 ltrnset.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 ltrnset.h . . . . 5 𝐻 = (LHyp‘𝐾)
72, 3, 4, 5, 6ltrnfset 38127 . . . 4 (𝐾𝐵 → (LTrn‘𝐾) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}))
87fveq1d 6773 . . 3 (𝐾𝐵 → ((LTrn‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
91, 8eqtrid 2792 . 2 (𝐾𝐵𝑇 = ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊))
10 fveq2 6771 . . . . 5 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = ((LDil‘𝐾)‘𝑊))
11 ltrnset.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
1210, 11eqtr4di 2798 . . . 4 (𝑤 = 𝑊 → ((LDil‘𝐾)‘𝑤) = 𝐷)
13 breq2 5083 . . . . . . . 8 (𝑤 = 𝑊 → (𝑝 𝑤𝑝 𝑊))
1413notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑝 𝑤 ↔ ¬ 𝑝 𝑊))
15 breq2 5083 . . . . . . . 8 (𝑤 = 𝑊 → (𝑞 𝑤𝑞 𝑊))
1615notbid 318 . . . . . . 7 (𝑤 = 𝑊 → (¬ 𝑞 𝑤 ↔ ¬ 𝑞 𝑊))
1714, 16anbi12d 631 . . . . . 6 (𝑤 = 𝑊 → ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) ↔ (¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊)))
18 oveq2 7279 . . . . . . 7 (𝑤 = 𝑊 → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑝 (𝑓𝑝)) 𝑊))
19 oveq2 7279 . . . . . . 7 (𝑤 = 𝑊 → ((𝑞 (𝑓𝑞)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑊))
2018, 19eqeq12d 2756 . . . . . 6 (𝑤 = 𝑊 → (((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤) ↔ ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊)))
2117, 20imbi12d 345 . . . . 5 (𝑤 = 𝑊 → (((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
22212ralbidv 3125 . . . 4 (𝑤 = 𝑊 → (∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤)) ↔ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))))
2312, 22rabeqbidv 3419 . . 3 (𝑤 = 𝑊 → {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))} = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
24 eqid 2740 . . 3 (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))}) = (𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})
2511fvexi 6785 . . . 4 𝐷 ∈ V
2625rabex 5260 . . 3 {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))} ∈ V
2723, 24, 26fvmpt 6872 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ {𝑓 ∈ ((LDil‘𝐾)‘𝑤) ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑤 ∧ ¬ 𝑞 𝑤) → ((𝑝 (𝑓𝑝)) 𝑤) = ((𝑞 (𝑓𝑞)) 𝑤))})‘𝑊) = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
289, 27sylan9eq 2800 1 ((𝐾𝐵𝑊𝐻) → 𝑇 = {𝑓𝐷 ∣ ∀𝑝𝐴𝑞𝐴 ((¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊) → ((𝑝 (𝑓𝑝)) 𝑊) = ((𝑞 (𝑓𝑞)) 𝑊))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  wral 3066  {crab 3070   class class class wbr 5079  cmpt 5162  cfv 6432  (class class class)co 7271  lecple 16967  joincjn 18027  meetcmee 18028  Atomscatm 37273  LHypclh 37994  LDilcldil 38110  LTrncltrn 38111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-ltrn 38115
This theorem is referenced by:  isltrn  38129
  Copyright terms: Public domain W3C validator